
GPH: Similarity Search in Hamming Space

Jianbin Qin† Yaoshu Wang† Chuan Xiao‡ Wei Wang† Xuemin Lin† Yoshiharu Ishikawa‡
†University of New South Wales, Australia

{jqin, yaoshuw, weiw, lxue}@cse.unsw.edu.au
‡ Nagoya University, Japan

chuanx@nagoya-u.jp ishikawa@i.nagoya-u.ac.jp

Abstract—A similarity search in Hamming space finds binary
vectors whose Hamming distances are no more than a threshold
from a query vector. It is a fundamental problem in many
applications, including image retrieval, near-duplicate Web page
detection, and machine learning. State-of-the-art approaches to
answering such queries are mainly based on the pigeonhole
principle to generate a set of candidates and then verify them.

We observe that the constraint based on the pigeonhole prin-
ciple is not always tight and hence may bring about unnecessary
candidates. We also observe that the distribution in real data
is often skew, but most existing solutions adopt a simple equi-
width partitioning and allocate the same threshold to all the
partitions, and hence fail to exploit the data skewness to optimize
the query processing. In this paper, we propose a new form of
the pigeonhole principle which allows variable partition size and
threshold. Based on the new principle, we first develop a tight
constraint of candidates, and then devise cost-aware methods
for dimension partitioning and threshold allocation to optimize
query processing. Our evaluation on datasets with various data
distributions shows the robustness of our solution and its superior
query processing performance to the state-of-the-art methods.

I. INTRODUCTION

Finding similar objects is a fundamental problem in database

research and has been studied for several decades [31]. Among

many types of queries to find similar objects, Hamming distance

search on binary vectors is an important one. Given a query

q, a Hamming distance search finds all vectors in a database

whose Hamming distances to q are no greater than a threshold

τ . Answering such queries efficiently plays an important role

in many applications, including Web search, image search, and

scientific database. For example:

• For image retrieval, images are converted to compact binary

vectors and those within a Hamming distance threshold are

identified as candidates for further image-level verification [33].

Recently, deep learning has become remarkably successful in

image recognition. Learning to hash algorithms that utilize

neural networks have been actively explored [15], [17], [7].

In these studies, images are represented by binary vectors and

Hamming distance is utilized to capture the dissimilarity.

• For information retrieval, state-of-the-art methods represent

text documents by binary vectors through hashing [8]. Google

converts Web pages into 64-bit vectors and uses Hamming

similarity search to detect near-duplicate Web pages [20].

• For scientific databases, a fundamental task in cheminformatics

is to find similar molecules [11], [22]. In this task, molecules

are converted into binary vectors, and the Tanimoto similarity

is used to measure the similarity between molecules. This

similarity constraint can be converted to an equivalent

Hamming distance constraint [34].

The naı̈ve algorithm to answer a Hamming distance search

query requires access of every vector in the database; hence it

is expensive and does not scale well to large datasets. Therefore,

there has been much interest in devising efficient indexes and

algorithms. Many existing methods [1], [16], [34], [23] adopt

the filter-and-refine framework to quickly find a set of candidates

and then verify them. They are based on the naı̈ve application

of the pigeonhole principle to this problem: If the n dimensions

are partitioned into m equi-width parts (in this paper, we assume

n mod m = 0), then a necessary condition for the Hamming

distance of two vectors to be within τ is that they must share a

part in which the Hamming distance is within
⌊

τ
m

⌋
. This leads

to a filtering condition, and produces a set of candidate vectors,

which are then verified by calculating the Hamming distances

and comparing with the threshold. As a result, the efficiencies

of these methods critically depend on the candidate size.

However, despite the success and prevalence of this framework,

we identify that the filtering condition has two inherent major

weaknesses: (1) The threshold on each partition is not
always tight. Hence, many unnecessary candidates are included.

For example, when m = 3, the filtering conditions for τ in

[9, 11] are the same (Hamming distance ≤
⌊

τ
m

⌋
= 3), and hence

will produce the same set of candidates.

(2) The thresholds on the partitions are evenly dis-
tributed. It assumes a uniform distribution and does not work

well when the dataset is skewed. We found that many real

datasets are skewed to varying degrees and complex correlations

exist among dimensions. Fig. 1 shows that 8 out of 11 real

datasets have dimensions with skewness greater than 0.3 1, and

5 out of the 8 datasets contain a vector whose frequency ≥ 0.1
on a partition, meaning that at least 1/10 data vectors become

candidates if the query matches the data vector on this partition.

In this paper, we propose a novel method to answer the

Hamming distance search problem and address the above-

mentioned weaknesses. We propose a tight form of the pigeonhole

principle named general pigeonhole principle. Based on the new

principle, the thresholds of the m partitions sum up to τ−m+1,

less than τ , thus yielding a stricter filtering condition than the

existing methods. In addition, the threshold on each partition is

a variable in the range of [−1, τ], where −1 indicates that this

1To measure the skewness of the i-th dimension, we calculate the numbers
of vectors whose values on the i-th dimension are 0 and 1, respectively, and
then take the ratio of their difference and the total number of vectors.

29

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00013

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Sk
ew

ne
ss

Dimension

PubChem
GIST

mSong
Trevi3200

Ran50
Cifar10

Glove
Ran100

Bigann2M
Notre
SIFT

UQVideo

Fasttext

Fig. 1. Skewness (
|#1s−#0s|

#data
) by dimension of datasets in [14].

partition is ignored when generating candidates. This enables

us to choose proper thresholds for different partitions in order

to improve query processing performance. We prove that the

candidate condition based on the general pigeonhole principle

is tight; i.e., the threshold allocated to each partition cannot

be further reduced. To tackle data skewness and dimension

correlations, we first devise an online algorithm to allocate

thresholds to partitions using a query processing cost model, and

then devise an offline algorithm to optimize the partitioning of

vectors by taking account of the distribution of dimensions. The

proposed techniques constitute the GPH algorithm. Experiments

are run on several real datasets with different data distributions.

The results show that the GPH algorithm performs consistently

well on all these datasets and is faster than state-of-the-art

methods by up to two orders of magnitude.

Our contributions can be summarized as follows. (1) We

propose a new form of the pigeonhole principle to obtain a tight

filtering condition and enable flexible threshold allocation. (2) We

propose an efficient online query optimization method to allocate

thresholds on the basis of the new pigeonhole principle. (3) We

propose an offline partitioning method to address the selectivity

issue caused by data skewness and dimension correlations. (4) We

conduct extensive experimental study on several real datasets

to evaluate the proposed method. The results demonstrate the

superiority of the proposed method over state-of-the-art methods.

II. PRELIMINARIES

A. Problem Definition

In this paper, we focus on the similarity search on binary

vectors. We can view an object as an n-dimensional binary

vector x. x[i] denotes the value of the i-th dimension of x. Let

Δ(x[i], y[i]) = 0, if x[i] = y[i]; or 1, otherwise. The Hamming

distance between two vectors x and y, denoted H(x, y), is the

number of dimensions on which x and y differ:

H(x, y) =

n∑
i=1

Δ(x[i], y[i]).

Hamming distance is a symmetric measure. If we regard x (re-

spectively, y) as a yardstick, we can also say that y (respectively,

x) has H(x, y) errors with respect to x (respectively, y).

Given a collection of data objects D, a query object q, a

Hamming distance search is to find all data objects whose

Hamming distance to q is no greater than a threshold τ , i.e.,

{x | x ∈ D, H(x, q) ≤ τ }.

B. Basic Pigeonhole Principle

Most exact solutions to Hamming distance search are based

on the filter-and-refine framework to generate a set of candidates

that satisfy a necessary condition of the Hamming distance

constraint. The majority of these methods [1], [16], [34], [23]

are based on the intuition that if two vectors are similar, there

will be a pair of similar partitions from the two vectors. Hence

the (basic) pigeonhole principle is utilized by these methods.

Lemma 1 (Basic Pigeonhole Principle): x and y are di-

vided into m partitions. Each partition consists of n
m dimensions.

Let xi and yi (1 ≤ i ≤ m) denote each partition in x and y,

respectively. If H(x, y) ≤ τ , there exists at least one partition i
such that H(xi, yi) ≤

⌊
τ
m

⌋
.

A data object x satisfying the condition ∃i, H(xi, qi) ≤
⌊

τ
m

⌋
is called a candidate. Since candidates are verified by computing

the Hamming distance to the query, the query processing

performance depends heavily on the candidate number.

C. Overview of Existing Approaches

We briefly introduce a state-of-the-art method, Multi-index

Hamming (MIH) [23]; other methods based on the basic

pigeonhole principle work in a similar way. The n dimensions

are divides into m equi-width partitions. In each partition, based

on basic pigeonhole principle, it performs Hamming distance

search on n′ =
⌊
n
m

⌋
dimensions with a threshold τ ′ =

⌊
τ
m

⌋
.

MIH builds an inverted index offline, mapping each partition of

a data object to the object ID. For each partition of the query, it

enumerates n′-dimensional vectors whose Hamming distances

to the partition are within τ ′, called signatures. It looks up

signatures in the index to find candidates and verifies them.

D. Weaknesses of Basic Pigeonhole Principle

Next we analyze the major drawbacks of the filtering condition

based on the basic pigeonhole principle. Note that the filtering

condition is uniquely characterized by a vector of thresholds

allocated to each corresponding partition; we call the vector

threshold vector, and denote the one used by the basic pigeonhole

principle as Tbasic = [
⌊

τ
m

⌋
, . . . ,

⌊
τ
m

⌋
]. We also define the

dominance relationship between threshold vectors. Let ni denote

the number of dimensions in the i-th partition. T1 dominates

T2, or T1 ≺ T2, iff ∀i ∈ { 1, . . . ,m }, T1[i] ≤ T2[i] and

[T1[i], T2[i]] ∩ [−1, ni − 1] 	= ∅, and ∃i, T1[i] < T2[i].
• Tbasic is not always tight. By the tightness of a threshold

vector T , we mean that (1) (correctness) every vector whose

Hamming distance to the query is within the threshold

will be found by the filtering condition based on T , and

(2) (minimality) there does not exists another vector T ′

that dominates T yet still guarantees correctness. As the

candidate size is monotonic with respect to the threshold, an

algorithm based on a threshold vector which dominates Tbasic

will generate fewer or at most equal number of candidates

compared with an algorithm based on Tbasic.

Example 1: Consider τ = 9 and m = 3. The threshold

vector Tbasic is [3, 3, 3]. We can find a dominating threshold

vector T = [2, 2, 3] which is tight and guarantees both

correctness and minimality. Note that there may be multiple

30

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

tight threshold vectors for the same τ . E.g., another tight

threshold vector for the example can be [2, 3, 2] or [4, 3, 0] 2.

• The filtering condition does not adapt to the data distri-
bution in the partitions. Skewness and correlations among

dimensions often exist in real data. Equal allocation of

thresholds, as done in Tbasic, may result in poor selectivity

for some partitions, hence excessive number of candidates.

Several recent studies recognized this issue and proposed

several methods to either obtain relatively less skew partitions

by partition rearrangement [34] or allocating varying thresholds

heuristically to different partitions [10]. In contrast, we propose

that skewed partitions can be beneficial and we can reduce the

candidate size by judiciously allocating different thresholds to

different partitions for each query to exploit such skewness,

as shown in Example 2.

Example 2: Suppose n = 8, m = 2, and τ = 2. Consider

the four data vectors and the query, and two different

partitioning schemes in Table I. Consider the first query and

existing method will use Tbasic = [1, 1]. This will results in all

the four data vectors recognized as candidates, but only one

(x1) is the result. If we use the first six dimensions as one

TABLE I
BENEFITS OF ADAPTIVE PARTITIONING AND THRESHOLDING

Equi-width Partitioning Variable Partitioning

Partition 1 Partition 2 Partition 1 Partition 2

x1 = 00000000 0000 0000 000000 00

x2 = 00000111 0000 0111 000001 11

x3 = 00001111 0000 1111 000011 11

x4 = 10011111 1001 1111 100111 11

q1 = 10000000 1000 0000 100000 00
τ1 = 1 τ2 = 1 τ1 = 2 τ2 = 0

partition and the rest two dimensions as the other dimension,

and use T = [2, 0], the candidate size will be reduced to 2

(x1 and x2).

III. GENERAL PIGEONHOLE PRINCIPLE

In this section, we propose a general form of the pigeonhole

principle which allows variable thresholds to guarantee the

tightness of threshold vectors.

We begin with the allocation of thresholds. Given a threshold

vector, we use the notation ‖T‖1 to denote the sum of thresholds

in all the partitions, i.e., ‖T‖1 =
∑m

i=1 T [i]. The flexible

pigeonhole principle is stated below.

Lemma 2 (Flexible Pigeonhole Principle): A partitioning

P divides a n-dimensional vector into m disjoint partitions. x
and y are partitioned by P . Consider a vector T = [τ1, . . . , τm]
such that τi are integers and ‖T‖1 = τ . If H(x, y) ≤ τ , there

exists at least one partition i such that H(xi, yi) ≤ τi.
Proof: Assume that �i such that H(xi, yi) ≤ τi. Since

partitions are disjoint, H(x, y) =
∑m

i=1 H(xi, yi) >
∑m

i=1 τi.
Hence H(x, y) > τ , which contradicts that H(x, y) ≤ τ .

The principle stated by Lemma 2 is more flexible than the

basic pigeonhole principle in the sense that we can choose

2Please refer to Section III for more explanation of tightness.

arbitrary thresholds for different partitions. Intuitively, we may

tolerate more errors for selective partitions and fewer errors for

unselective partitions.

To achieve tightness, we first extend the threshold allocation

from integers to real numbers.

Lemma 3: x and y are partitioned by P into m disjoint

partitions. Consider a vector T = [τ1, . . . , τm] in which the

thresholds are real numbers. ‖T‖1 = τ . If H(x, y) ≤ τ , there

exists at least one partition i such that H(xi, yi) ≤ �τi
.
Proof: The proof of Lemma 2 also applies to real numbers.

Therefore, if
∑m

i=1 τi = τ and H(x, y) ≤ τ , then ∃i,
H(xi, yi) ≤ τi. Because τi are real numbers and H(xi, yi)
are integers, ∃i, H(xi, yi) ≤ �τi
.

Definition 1 (Integer Reduction): Given a threshold vec-

tor T = [τ1, τ2, . . . , τm], we can reduce it to T ′ =
[�τ1
 , �τ2
 , . . . , �τm
]. This reduction is called integer reduc-
tion.

It is obvious that the candidate size does not change after an

integer reduction, as the Hamming distances must be integers.

When we combine Lemma 3 and the integer reduction

technique, they can produce a threshold vector which dominates

Tbasic, as shown in Example 3.

Example 3: Recall in Example 1, Tbasic is [3, 3, 3] using the

basic pigeonhole principle.

To obtain a dominating vector, we can start with a possible

threshold vector T = [2.9, 2.9, 3.2]. Then by the integer

reduction technique, T is reduced to T ′ = [2, 2, 3]. To see this

is correct, if 	 ∃i, H(xi, yi) ≤ T ′[i], there will be 3+3+4 = 10
errors between x and y. Compared to [3, 3, 3], T ′ is a dominating

threshold vector, and the constraints on the first two partitions

are stricter.

The above example also shows that the sum of thresholds of

partitions can be reduced. The following lemma and theorem

show how they work in the general case and the tightness

guarantee of the resulting threshold vectors.

Lemma 4 (General Pigeonhole Principle): x and y are par-

titioned by P into m disjoint partitions. Consider a threshold

vector T composed of integers. ‖T‖1 = τ − m + 1. If

H(x, y) ≤ τ , there exists at least one partition i such that

H(xi, yi) ≤ τi.
Proof: Given a vector T = [τ1, . . . , τm] such that ‖T‖1 =

τ −m + 1, we consider another vector T ′ = [τ ′i , . . . , τ
′
m] =

[τ1+1, . . . , τm−1+1, τm]; i.e., it equals to T on the last partition

and is greater than T by 1 in the other m−1 partitions. Because

‖T ′‖1 = ‖T‖1 + (m− 1) = τ , by Lemma 2, if H(x, y) ≤ τ ,

then ∃i, H(xi, yi) ≤ τ ′i .
For the first (m− 1) dimensions in T ′, we decrease each of

their thresholds by a small positive real number ε, and for the last

dimension, we increase the threshold by (m− 1)ε; i.e., the sum

of thresholds does not change. Hence we have a vector T ′′ =
[τ ′′i , . . . , τ

′′
m] = [τ1 +1− ε, . . . , τm−1 +1− ε, τm + (m− 1)ε].

Because ‖T ′′‖1 = ‖T ′‖1 = τ , by Lemma 3, if H(x, y) ≤ τ ,

then ∃i, H(xi, yi) ≤ �τ ′′i
. Because

�τ ′′i
 =
{
�τi + 1− ε
 = τi, if i < m;

�τi + (m− 1)ε
 = τi, if i = m,

31

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

if H(x, y) ≤ τ , then ∃i, H(xi, yi) ≤ τi.

One may notice that in the above proof, the partitions we

choose to decrease thresholds are not limited to the first (m−1)
ones. Therefore, given a threshold vector T such that ‖T‖1 =
τ , we may choose any (m − 1) partitions and decrease their

thresholds by 1. For the resulting vector T ′, ‖T ′‖1 = τ −m+1.

We may use it as a stricter condition to generate candidates and

the correctness of the algorithm is still guaranteed. We call the

process of converting T to T ′ ε-transformation.

Theorem 1: The filtering condition based on the general

pigeonhole principle is tight.

Proof: The correctness is stated in Lemma 4. We prove the

minimality. Given a threshold vector T based on the general

pigeonhole principle, i.e., ‖T‖1 = τ −m + 1, we consider a

threshold vector T ′ which dominates T , i.e., ∀i ∈ { 1, . . . ,m },

T ′[i] ≤ T [i] and [T ′[i], T [i]] ∩ [−1, ni − 1] 	= ∅, and

∃j ∈ { 1, . . . ,m }, T ′[j] < T [j]. Because ∀i ∈ { 1, . . . ,m },
H(xi, qi) ∈ [0, ni] and [T ′[i], T [i]]∩ [−1, ni− 1] 	= ∅, we may

construct a vector x such that ∀i ∈ { 1, . . . ,m }, H(xi, qi) =
max(0, T ′[i] + 1). ∀i ∈ { 1, . . . ,m }, because T ′[i] ≤ T [i]
and [T ′[i], T [i]] ∩ [−1, ni − 1] 	= ∅, H(xi, qi) ≤ T [i] + 1.

Because ∃j ∈ { 1, . . . ,m }, T ′[j] < T [j], ∃j ∈ { 1, . . . ,m },
H(xi, qi) ≤ T [i]. Because H(xi, qi) > T ′[i] on all the

partitions, x is not a candidate by T ′. However, H(x, q) =∑m
i=1 H(xi, qi) ≤ ‖T‖1 +m− 1 = τ , meaning that x is result

of the query. Therefore, the filtering condition based on T ′ is

incorrect, and thus the minimality of T is proved.

One surprising but beneficial consequence of the ε-
transformation is that the resulting threshold of a partition may

become negative. For example, [1, 0, 0] becomes [0, 0,−1]3 if

the first and third partitions are chosen to decrease thresholds.

Since H(xi, yi) is a non-negative integer, H(xi, yi) ≤ T [i]
is always false if T [i] is negative. This fact indicates that the

partitions with negative thresholds can be safely ignored for

candidate generation. As will be shown in the next section, this

allows us to ignore partitions where the query and most of the

data are identical. This endows our method the unique ability to

handle highly skewed data or partitions.

Example 4: Consider the four data vectors and two queries

in Table II. For q1, we show the threshold vectors based on the

flexible pigeonhole principle and the general pigeonhole principle.

The candidate sizes are 2 and 1, respectively. For q2, we show

two different threshold vectors based on the general pigeonhole

principle. The candidate sizes are 4 and 2, respectively.

IV. THRESHOLD ALLOCATION

To utilize the general pigeonhole principle to process queries,

there are two key issues: (1) how to divide the n dimensions

into m partitions, and (2) how to compute the threshold vector

T such that ‖T‖1 = τ −m+1. We will tackle the first issue in

Section V with an offline solution. Before that, we focus on the

second issue in this section and propose an online algorithm.

3Note that in our method, we only consider the case of −1 for the negative
threshold of a partition since the other negative values are not necessary.

TABLE II
THRESHOLD VECTOR AND THEIR CANDIDATE SIZES

Partition 1 Partition 2

x1 = 00000000 000000 00

x2 = 00000111 000001 11

x3 = 00001111 000011 11

x4 = 10011111 100111 11

q1 = 10000000 100000 00

q2 = 10000011 100000 11

q1 T = [2, 0] Cand = {x1, x2 }
T = [1, 0] Cand = {x1 }

q2 T = [1, 0] Cand = {x1, x2, x3, x4 }
T = [2,−1] Cand = {x1, x2 }

A. Cost Model

To optimize the threshold allocation, we first analyze the

query processing cost. Like MIH, we also build an inverted

index offline to map each partition of a data object to the object

ID. Then for each partition of the query, we enumerate signatures

to generate candidates.

The query processing cost consists of three parts:

Cquery proc(q, T) =Csig gen(q, T) + Ccand gen(q, T)

+ Cverify(q, T),

where Csig gen, Ccand gen, and Cverify denote the costs of

signature generation, candidate generation, and verification,

respectively.

For each partition i, a signature is a vector whose Hamming

distance is within τi to the i-th partition of query q. Since we

enumerate all such vectors, the signature generation cost is

Csig gen(q, T) =

m∑
i=1

(
ni

τi

)
· cenum,

where ni denotes the number of dimensions in the i-th partition,

and cenum is the cost of enumerating the value of a dimension

in a given vector. If τi < 0, the cost is 0 for the i-th partition.

Let Ssig denote the set of signatures generated. The candidate

generation cost can be modeled by inverted index lookup:

Ccand gen(q, T) =
∑

s∈Ssig

|Is| · caccess,

where |Is| denotes the length of the postings list of signature s,

and caccess is the cost of accessing an entry in a postings list.

The verification cost is

Cverify(q, T) = |Scand| · cverify,
where Scand is the set of candidates, and cverify is the cost

to check if two n-dimensional vectors’ Hamming distance is

within τ .

In practice, the signature generation cost is usually much less

than the candidate generation cost and the verification cost (see

Section VII-B for experiments). So we can ignore the signature

32

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

generation cost when optimizing the threshold allocation. In

addition, it is difficult to accurately estimate the size of Scand

using the lengths of postings lists, because it can be reduced

from the minimal k-union problem [29], which is proved to be

NP-hard. Nonetheless, |Scand| is upper-bounded by the sum of

candidates generated in all the partitions, i.e.,
∑

s∈Ssig
|Is|. Our

experiments (Section VII-B) show that the ratio of |Scand| and

this upper bound depends on data distribution and τ . Given a

dataset, the ratio with respect to varying τ can be computed and

recorded by generating a number of queries and processing them.

Let α denote this ratio. We may rewrite the number of candidates

in the form of α ·∑m
i=1 CN(qi, τi), where CN(qi, τi) is the

number of candidates generated by the i-th partition of the query

q with a threshold of τi (when τi = −1, CN(qi, τi) = 0).

Hence the query processing cost can be estimated as:

̂Cquery proc(q, T) =
m∑
i=1

CN(qi, τi) · (caccess + α · cverify).

(1)

With the above cost model, we can formulate the threshold

allocation as an optimization problem.

Problem 1 (Threshold Allocation): Given a collection of

data objects D, a query q and a threshold τ , find the threshold

vector T that minimizes the estimated query processing cost

under the general pigeonhole principle; i.e.,

argmin
T

̂Cquery proc(q, T), s.t. ‖T‖1 = τ −m+ 1.

B. Threshold Allocation Algorithm

Since caccess, cverify , and α are independent of CN(qi, τi),
we can omit the coefficient (caccess + α · cverify) in Equa-

tion 1 and find the minimum query processing cost with only

CN(qi, τi). The computation of CN(qi, τi) values will be

introduced in Section IV-C. Here we treat CN(qi, τi) as a

black box with O(1) time complexity and propose an online

threshold allocation algorithm based on dynamic programming.

Let OPT [i, t] record the minimum query processing cost

(omitting the coefficient (caccess + α · cverify)) for partitions

1, . . . , i with a sum of thresholds t. We have the following

recursive formula:

OPT [i, t] =

⎧⎨
⎩

t+i−1
min
e=−1

OPT [i− 1, t− e] + CN(qi, e),if i > 1;

CN(qi, t), if i = 1.

With the recursive formula, we design a dynamic programming

algorithm for threshold allocation, whose pseudo-code is shown

in Algorithm 1. It first initializes the costs for the first partition

(Lines 1 – 2), i.e., OPT [1,−1], . . . , OPT [1, τ]. Then it iterates

through the other partitions and compute the minimum costs

(Lines 3 – 10). Note that the negative threshold −1 is also

consider for each partition. Finally, we trace the path that reaches

OPT [m, τ −m+ 1] to obtain the threshold vector (Lines 11

– 14). The time complexity of the algorithm is O(m · (τ + 1)2).

Algorithm 1: DPAllocate(q,m, τ)

1 for e = −1 to τ do
2 OPT [1, e]← CN(q1, e), PATH[1, e]← e;

3 for i = 2 to m do
4 for t = −i to τ − i+ 1 do
5 cmin = +∞;
6 for e = −1 to t+ i− 1 do
7 if OPT [i− 1, t− e] + CN(qi, e) < cmin then
8 cmin ← OPT [i− 1, t− e] + CN(qi, e);
9 emin ← e;

10 OPT [i, t] = cmin, PATH[i, t] = emin;

11 e← τ −m+ 1;
12 for i = m to 1 do
13 T [i]← PATH[i, e];
14 e← e− PATH[i, e];

15 return T ;

Example 5: Consider a dataset of 100 binary vectors and we

partition it into 4 partitions. Given a query q, for each partition

i, suppose the numbers of candidates (denoted CNi) under

different thresholds are provided in the table below.

τi = −1 τi = 0 τi = 1 τi = 2 τi = 3 τi = 4

CN1 0 5 10 15 50 100
CN2 0 10 80 90 95 100
CN3 0 5 15 20 70 100
CN4 0 10 70 80 95 100

We use Algorithm 1 to compute the threshold vector. The

OPT [i, t] values are given in the table below.

t = i = 1 i = 2 i = 3 i = 4

-3 0 0 0 5
-2 0 0 5 10
-1 0 5 10 20
0 5 15 20 30
1 10 20 20 30
2 15 25 35 45
3 50 60 40 45
4 100 110 45 55

The minimum query processing cost OPT [4, 4] = 55. We

trace the path (in boldface) that reaches this value and obtain

the threshold vector [2, 0, 2, 0].

C. Computing Candidate Numbers

In order to run the threshold allocation algorithms, we need to

obtain the candidate numbers CN(qi, τi) beforehand. An exact

solution to computing CN(qi, τi) is to enumerate all possible

vectors for the i-th partition and then count how many vectors in

D has a Hamming distance within τi to the enumerated vector

in this partition. These numbers are stored in a table. When

processing the query, with the given qi, the table is looked up

for the corresponding entry CN(qi, τi). The time complexity

of this algorithm is O(m · 2n · 2τ), and the space complexity

is O(m · 2n). This method is only feasible when n and τ are

small. To cope with large n and τ , we devise two approximation

algorithms to estimate the number of candidates.

Sub-partitioning. The basic idea of the first approximation

algorithm is splitting qi into smaller equi-width sub-partitions

33

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

and estimating CN(qi, τi) with the candidate numbers of the

sub-partitions. We divide qi into mi sub-partitions. Each sub-

partition has a fixed number of dimensions so that its candidate

number can be computed using the exact algorithm in reasonable

amount of time and stored in main memory. For the thresholds of

the sub-partitions, we may use the general pigeonhole principle

and divide τi into mi values such that they sum up to τi−mi+1.

Let qij denote a sub-partition of qi and τij denote its threshold.

Let G(mi, τi) be the set of threshold vectors of which the

total thresholds sum up to no more than τi − mi + 1; i.e.,

{ [τi1, . . . , τimi
]|τij ∈ [−1, τi] ∧

∑mi

j=1 τij ≤ τi −mi + 1 }.
We offline compute all the CN(qij , τij) values for all τij ∈

[−1, τi] using the aforementioned exact algorithm; i.e., enumerate

all possible query vectors and then count how many data vectors

in D has a Hamming distance within τij to the enumerated

vector in this sub-partition. We assume that the candidates in

the mi sub-partitions are independent. Then CN(qi, τi) can be

approximately estimated online with the following equation.

̂CN(qi, τi) =
∑

g∈G(mi,τi)

mi∏
j=1

(CN(qij , g[j])− CN(qij , g[j]− 1)).

Machine Learning. We may also use machine learning

technique to predict the candidate number for a given 〈qi, τi〉.
For each τi, we regard each dimension of qi as a feature and

randomly generate feature vectors xk = [b1, . . . , b|qi|]. The

candidate number CN(xk, τi) can be obtained by processing

xk as a query with a threshold τi. Then we apply the regression

model on the training data Ti = { 〈xk, CN(xk, τi)〉 }.
Let hτi(xi, θi) denote the machine learning model, where

θi denotes its parameters. Traditional regression models utilize

mean squared error as loss function. To reduce the impact of

large CN(xk, τi), we use relative error as our loss function:

J(Ti, θi) =
∑|Ti|

k=1{
CN(xk,τi)−hτi

(xk,θi)

CN(xk,τi)
}2. According to [25],

we utilize the approximation ln(t) ≈ t−1 to estimate J(Ti, θi):

J(Ti, θi) =
|Ti|∑
k=1

{
1− hτi(xk, θi)

CN(xk, τi)

}2

≈
|Ti|∑
i=1

{
ln

CN(xk, τi)

hτi(xk, θi)

}2

=

|Ti|∑
i=1

{lnCN(xk, τi)− lnhτi(xk, θi)}2.

From the above equation, we can simply convert training data

〈xk, CN(xk, τi)〉 into 〈xk, lnCN(xk, τi)〉 and then take mean

squared error to train an SVM model with RBF kernel.

V. DIMENSION PARTITIONING

To deal with data skewness and dimension correlations, the

existing methods for Hamming distance search resort to random

shuffle [1] or dimension rearrangement [34], [30], [18]. All

of them are aiming towards the direction that the dimensions

in each partition or the signatures in the index are uniformly

distributed, so as to reduce the candidates caused by frequent

signatures. In this section, we present our method for dimension

partitioning. We devise a cost model of dimension partitioning

and convert the partitioning into an optimization problem to

optimize query processing performance. Then we propose the

algorithm to solve this problem.

A. Cost Model

Let Pi denote a set of dimensions in the range [1, n]. Our

goal is to find a partitioning P = {P1, . . . , Pm } such that

Pi∩Pj = ∅ if i 	= j, and ∪m
i=1Pi = { 1, . . . , n }. Given a query

workload Q = {< q1, τ1 >, . . . , < q|Q|, τ |Q| > }, the query

processing cost of the workload is the sum of the costs of its

constituent queries:

Cworkload(Q,P) =
|Q|∑
i=1

̂Cquery proc(q
i, τ i,P), (2)

where ̂Cquery proc(q
i, τ i,P) is the processing cost of query

qi with a threshold τ i, which can be computed using the dynamic

programming algorithm proposed in Section IV. Then we can

formulate the dimension partitioning as an optimization problem.

Problem 2 (Dimension Partitioning): Given a collection of

data objects D, a query workload Q, find the partitioning P
that minimizes the query processing cost of Q under the general

pigeonhole principle; i.e.,

argmin
P

Cworkload(Q,P).

Lemma 5: The dimension partitioning problem is NP-hard.

Proof: We can reduce the dimension partitioning problem

from the number partitioning problem [2], which is to partition

a multiset of positive integers, S, into two subsets S1 and

S2 such that the difference between the sums in two sets is

minimized. Consider a special case of m = 2 and a Q of

only one query. Let S be a multiset of n positive integers,

each representing a dimension in the dimension partitioning

problem. Let sum(S) denote the sum of numbers in S. For

i ∈ { 1, 2 }, Let CN(qi, τi) = sum(Si)
2, ∀τi ∈ [−1, τ]; i.e.,

the candidate number in partition i equals to the square of

the sum of numbers in this partition. By Equations 1 and 2,

Cworkload(Q,P) = (sum(S1)
2 + sum(S2)

2) · (caccess + α ·
cverify). Cworkload is minimized when the difference between

sum(S1) and sum(S2) is minimized. Hence the special case

of dimension partitioning problem is reduced from the number

partitioning problem. Because the number partitioning problem

is NP-complete, the dimension partitioning is NP-hard.

B. Partitioning Algorithm

Seeing the difficulty of the dimension partitioning problem,

we propose a heuristic algorithm to select a good partitioning:

first generate an initial partitioning and then refine it.

Algorithm 2 captures the pseudo-code of the heuristic

partitioning algorithm. It first generates an initial partitioning P
of m partitions (Line 1). The details of the initialization step

will be introduced in Section V-C. Then the algorithm iteratively

34

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: HeuristicPartition(D,Q,m)

1 P ← InitialPartition(D,Q,m);
2 cmin ← Cworkload(Q,P);
3 f ← true;
4 while f = true do
5 f ← false;
6 foreach Pi ∈ P do
7 foreach d ∈ Pi do
8 P ′i ← Pi \ { d }, P ′ ← (P \ Pi) ∪ P ′i ;
9 foreach Pj ∈ P, j �= i do

10 P ′j ← Pj ∪ { d }, P ′ ← (P ′ \ Pj) ∪ P ′j ;
11 if Cworkload(Q,P ′) < cmin then
12 f ← true;
13 cmin ← Cworkload(Q,P ′);
14 Pmin ← P ′;

15 if f = true then
16 P ← Pmin;

17 return P;

improves the current partitioning by selecting the best option

of moving a dimension from one partition to another. In each

iteration, we pick a dimension from a partition Pi (Line 8), try

to move it to another partition Pj , j 	= i (Line 10), and compute

the resulting query processing cost of the workload. We try all

possible combination of Pi and Pj , and the option that yields

the minimum cost is taken as the move of this iteration (Line 16).

The above steps repeat until the cost cannot be further improved

by moving a dimension. The time complexity of the algorithm is

O(lmnc). l is the number of iterations. c is the time complexity

of computing the cost of the workload, O(|Q| ·m ·(τ+1)2). We

also note that due to the replacement of dimensions, partitions

may become empty in our algorithm. Hence it is not mandatory

to output exactly m partitions for an input partition number m.

For the input query workload Q, in case a historical query

workload is unavailable, a sample of data objects can be used as

a surrogate. Our experiments show that even if the distribution

of real queries are different from the query workload that we use

to compute the partitioning, our query processing algorithm still

achieves good performance (Section VII-G). We also note that

we may assign varying thresholds to the queries in the workload

Q. The benefit is that we can offline compute the partitioning

using the workload which cover a wide range of thresholds, and

then build an index without being aware of the thresholds of

real queries beforehand.

C. Initial Partitioning

Since the dimension partitioning algorithm stops at a local

optimum, we may achieve a better result with a carefully

selected initial partitioning. The correlation of dimensions play

an important role here. Unlike the existing methods which try

to make dimensions in each partition uniformly distributed, our

method aims at the opposite direction. We observe that the query

processing performance is usually improved if highly correlated

dimensions are put into the same partitions. This is because our

threshold allocation algorithm works online and optimizes each

query individually. When highly correlated dimensions are put

together, more errors are likely to be identified in a partition,

and thus our threshold allocation algorithm can assign a larger

threshold to this partition and smaller thresholds to the other

partitions; i.e., choosing proper thresholds for different partitions.

If the dimensions are uniformly distributed, all the partitions will

have the same distribution and there is little chance to optimize

for specific partitions.

We may measure the correlation of dimensions with entropy.

For a partition Pi, we project all the data objects in D on the

dimensions of Pi, and use DPi
to denote the set of the resulting

vectors. The correlation of the dimensions of Pi is measured by:

H(DPi
) = −

∑
X∈DPi

P (X) · logP (X).

According to the definition of entropy, a smaller value of

entropy indicates a higher correlation of the dimensions of Pi.

The entropy of the partitioning P is the sum of the entropies of

its constituent partitions:

H(P) =
m∑
i=1

H(DPi
).

Our goal is to find an initial partitioning P to minimize H(P).
To achieve this, we generate an equi-width partitioning in a

greedy manner: Starting with an empty partition, we select the

dimension which yields the smallest entropy if it is put into

this partition. This is repeated until a fixed partition size
⌊
n
m

⌋
is reached, and thereby the first partition is obtained. Then we

repeat the above procedure on the unselected dimensions to

generate the other (m− 1) partitions.

VI. THE GPH ALGORITHM

Based on the general pigeonhole principle and the techniques

proposed in Sections IV and V, we devise the GPH (short for

the General Pigeonhole principle-based algorithm for Hamming

distance search) algorithm.

The GPH algorithm consists of two phases: indexing phase

and query processing phase. In the indexing phase, it takes

as input the dataset D, the query workload Q, and a tunable

parameter m for the number of partitions. The partitioning P
is generated using the heuristic partitioning algorithm proposed

in Section V. Then for each n-dimensional vector x in D, we

divided it by P into m partitions. Then for the projection of

x on each partition, the ID of vector x is inserted into the

postings list of this projection. In the query processing phase,

the query q and the threshold τ are input to the algorithm. It

first partitions q by P into m partitions. Then the threshold

vector T is computed using the dynamic programming algorithm

proposed in Section IV. For the projection of q on each partition,

we enumerate the signatures whose Hamming distances to the

projection do not exceed the allocated threshold. Then for each

signature, we probe the inverted index to find the data objects

that have this signature in the same partition, and insert the

vector IDs into the candidate set. The candidates are finally

verified using Hamming distance and the true results are returned.

We omit the pseudo-code here in the interest of space.

35

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

VII. EXPERIMENTS

We report experiment results and analyses in this section.

A. Experiments Setup

The following algorithms are compared in the experiment.

• MIH is a method based on the basic pigeonhole principle [23].

It divides vectors into m equi-width partitions and uses a

threshold
⌊

τ
m

⌋
on all the partitions to generate candidates.

Its filtering condition is not tight. Signatures are enumerated

on the query side. We choose the fastest m setting for this

method on each dataset.

• HmSearch is a method based on the basic pigeonhole

principle [34]. Vectors are divided into
⌊
τ+3
2

⌋
equi-width

partitions. It has a filtering condition in multiple cases but not

tight. The threshold of a partition is either 0 or 1.

• PartAlloc is a method to solve the set similarity join

problem [10]. It divides vectors into τ+1 equi-width partitions

and allocate thresholds to partitions with three options: −1,

0, and 1. Its filtering condition is tight. Signatures are

enumerated on both data and query vectors. We convert

the Jaccard similarity constraint to an equivalent Hamming

distance constraint [1]. The greedy method is chosen to allocate

thresholds.

• LSH is an algorithm to retrieve approximate answers. We

convert the Hamming distance constraint to an equivalent

Jaccard similarity constraint and then use the minhash LSH [5].

The dimension which yields the minimum hash value is chosen

as a minhash. k minhashes are concatenated into a single

signature, and this is repeated l times to obtain l signatures.

We set k = 3 and recall to 95%. l =
⌈
log1−tk(1− r)

⌉
, where

t is the Jaccard similarity threshold.

• GPH is the method proposed in this paper.

Other methods for Hamming distance search, e.g., [16], [13],

[20], are not compared since prior work [34] showed they are

outperformed by HmSearch. We do not consider the method

in [26] because it focuses on small n (≤ 64) and small τ (≤ 4),

and it is significantly slower than the other algorithms in our

experiments. E.g., on GIST, when τ = 8, its average query

response time is 128 times longer than GPH. The approximate

method proposed in [24] is only fast for small thresholds. On

SIFT, when τ ≥ 12, it becomes slower than MIH even if the

recall is set to 0.9 [24]. Due to its performance compared to

MIH and the much larger threshold settings in our experiments,

we do not compare with the method in [24].

We select three publicly available real datasets with different

data distributions and application domains.

• SIFT is a set of 1 billion SIFT features from the BIGANN

dataset [12]. We follow the method used in [23] to convert

them into 128-dimensional binary vectors.

• GIST is a set of 80 million 256-dimensional GIST descriptors

for tiny images [28].

• PubChem is a database of chemical molecules. We sample

1 million entries, each of which is a 881-dimensional vector.

As can be seen from Fig. 1, SIFT has the smallest skewness

among the three. GIST is a medium skewed dataset. PubChem

 0.01

 0.1

 1

 10

 100

 1000

 10000

6 12 18 24 30

A
v
g
.
Q

u
er

y
 T

im
e

(m
s)

Threshold

verification

S

S

S

S
S

candidate generation
signature enumeration

threshold allocation

 0.01

 0.1

 1

 10

 100

 1000

 10000

6 12 18 24 30

A
v
g
.
Q

u
er

y
 T

im
e

(m
s)

Threshold

G
G

G
G

G

 0.01

 0.1

 1

 10

 100

 1000

 10000

6 12 18 24 30

A
v
g
.
Q

u
er

y
 T

im
e

(m
s)

Threshold

P

P
P

P
P

(a) Response Time Decomposed

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 4 8 12 16 20 24 28 32

C
an

d
vs

. S
um

Threshold

SIFT-sum
SIFT-cand
GIST-sum

GIST-cand
PubChem-sum
PubChem-cand

(b) Compare
∑

s∈Ssig
|Is| and Scand

Fig. 2. Justification of Assumptions

is a highly skewed dataset. In addition to the three real datasets,

we generate a synthetic dataset with varying skewness.

We sample a subset of 100 vectors from each dataset as

the query workload for the partitioning of GPH. To generate

real queries, for each dataset we sample 1,000 vectors (differ
from the query workload for partitioning) and take the rest as

data objects. We vary τ and measure the query response time

averaged over 1,000 queries. For GPH and PartAlloc, threshold

allocation time are also included. The τ settings are up to 32, 64,

and 32 on the three datasets, respectively. The reason why we

set smaller thresholds on PubChem is that due to the skewness,

more than 10% data objects are results when τ = 32.

The experiments are carried out on a server with a Quad-

Core Intel Xeon E3-1231 @3.4GHz Processor and 96GB RAM,

running Debian 6.0. All the algorithms are implemented in C++

in a main memory fashion.

B. Justification of Assumptions

We first justify our assumptions for the cost model of threshold

allocation. Fig. 2(a) shows the query processing time of GPH on

the three datasets (denoted S, G, and P, respectively). The time

is decomposed into four parts: threshold allocation, signature

enumeration, candidate generation, and verification. The figure

is plotted in logscale so that threshold allocation and signature

enumeration can be seen. Compared to candidate generation

and verification, the time spent on threshold allocation and

signature enumeration is negligible (< 3%), meaning that we can

ignore them when estimating the query processing cost. Fig. 2(b)

shows the sum of candidates generated in all the partitions

(
∑

s∈Ssig
|Is|, denoted dataset-sum) and the candidate sizes

(|Scand|, denoted dataset-cand) on the three datasets. It can be

seen that |Scand| is upper-bounded by
∑

s∈Ssig
|Is|. The ratio

of them varies from 0.69 to 0.98, depending on dataset and τ .

The ratios on different datasets and τ settings are recorded as

the value of α in Equation 1 for cost estimation.

C. Evaluation of Threshold Allocation

We evaluate threshold allocation by comparing with a baseline

algorithm (denoted RR). RR allocates thresholds in a round robin

manner, and the thresholds of all partitions sum up to τ −m+1.

For a fair comparison, we randomly shuffle the dimensions and

then use the equi-width partitioning (m is chosen for the best

performance) for the competitors in this set of experiments.

Figs. 3(a), 3(c), and 3(e) show the query processing costs (in

terms of candidate numbers) estimated by DP on the three

datasets. We also plot the costs of RR using our cost model.

36

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

 1x106

 1x107

 1x108

 4 8 12 16 20 24 28 32

A
vg

. E
st

im
at

ed
 C

os
t

Threshold

RR DP

(a) SIFT, Allocation Method, Cost

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

RR DP

(b) SIFT, Allocation Method, Time

 10000

 100000

 1x106

 1x107

 1x108

 8 16 24 32 40 48 56 64

A
vg

. E
st

im
at

ed
 C

os
t

Threshold

RR DP

(c) GIST, Allocation Method, Cost

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

RR DP

(d) GIST, Allocation Method, Time

 10000

 100000

 1x106

 1x107

 4 8 12 16 20 24 28 32

A
vg

. E
st

im
at

ed
 C

os
t

Threshold

RR DP

(e) PubChem, Allocation Method, Cost

 1

 10

 100

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

RR DP

(f) PubChem, Allocation Method, Time

Fig. 3. Evaluation of Threshold Allocation

The corresponding query response times are shown in Figs. 3(b),

3(d), and 3(f). The trends of the cost and the time are similar,

indicating that the cost model effectively estimates the query

processing performance. DP is significantly faster than RR in

query processing, and the gap is more remarkable on datasets

with more skewness. On PubChem, the time of RR is close to

sequential scan due to the skewness. With judicious threshold

allocation, the time is reduced by nearly two orders of magnitude.

To evaluate the candidate number computation, we compare

the sub-partitioning algorithm (denoted SP) and the machine

learning algorithm based on SVM model (denoted SVM). To

show why we choose SVM as the machine learning model, we

also compare with two other learning models: random forest

(RF) and a 3-layer deep neural network (DNN). The number of

sub-partitions is 2. The size of the training data is 1,000 for the

machine learning algorithms. Table III shows the relative errors

with respect to the exact method and the times of candidate

number computation (in microseconds). Since the performances

on the real datasets are similar, we only show the results on

the GIST dataset. The relative error of SVM is very small, and

it is more accurate and faster than SP. To compare learning

models, the relative error of RF is much higher than the other

methods. Although DNN estimates candidate numbers slightly

more accurately than SVM in some settings, their relative errors

are both very small, and the running time of DNN is much more

than SVM. In addition, we tried logistic regression and gradient

boosting decision tree. Their relative errors are higher than the

above methods and hence not shown here. Seeing these results,

we choose the machine learning algorithm based on SVM model

to estimate candidate numbers in the rest of the experiments.

D. Evaluation of Dimension Partitioning

To evaluate the effect of partitioning, we compare our method

(denoted GR) with the following competitors: (1) OR is to use

TABLE III
ESTIMATION WITH VARIOUS MODELS ON GIST (EACH CELL SHOWS

PERCENTAGE ERROR AND PREDICTION TIME (μS), SEPARATED BY /)

τ SP SVM RF DNN

16 1.75%/0.47 1.64%/0.31 8.73%/0.40 1.78%/2.64
32 0.37%/0.77 0.28%/0.28 12.43%/0.39 0.19%/2.60
48 0.15%/2.67 0.10%/0.43 9.26%/0.73 0.08%/3.83
64 0.07%/3.45 0.06%/0.29 3.58%/0.44 0.03%/2.44

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GR
OR

OS
DD

RS

(a) SIFT, Partitioning Method, Time

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Skewness

GreedyInit
OriginalInit

RandomInit

(b) SIFT, Initial Partitioning, Time

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GR
OR

OS
DD

RS

(c) GIST, Partitioning Method, Time

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Skewness

GreedyInit
OriginalInit

RandomInit

(d) GIST, Initial Partitioning, Time

 1

 10

 100

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GR
OR

OS
DD

RS

(e) PubChem, Partitioning Method, Time

 1

 10

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Skewness

GreedyInit
OriginalInit

RandomInit

(f) PubChem, Initial Partitioning, Time

Fig. 4. Evaluation of Dimension Partitioning

the original unshuffled order of the dataset. (2) RS is to perform

a random shuffle on the original order. (3) OS [34] and DD [30]

are two dimension rearrangement methods to make dimensions

in each partition uniformly distributed. We run GPH with the

above partitioning methods and show the query response times

in Figs. 4(a), 4(c), and 4(e). On SIFT, their performances are

close. When the dataset has more skewness, the advantage of

GR becomes remarkable. It is faster than the runner-up by up

to 4 times on GIST and 8 times on PubChem.

To evaluate the effect of initial partitioning, we run our

partitioning algorithm with three initial states: (1) the proposed

method which tries to minimize entropy (denoted GreedyInit),
(2) equi-width partitioning on the original unshuffled data

(denoted OriginalInit), and (3) equi-width partitioning after

random shuffle (denoted RandomInit). The corresponding query

response times on the three datasets are plotted in Figs. 4(b), 4(d),

and 4(f). The trends are similar to the previous set of experiments.

On datasets with more skewness, GreedyInit is consistently

faster than the other competitors, and the gap to the runner-up

can be up to 2 times.

As for the query workload Q to compute dimension parti-

tioning, our results show that the effect of its size on the query

processing performance is not obvious.E.g., when τ = 64, the

average query processing times vary from 4.19 to 3.97 seconds

on GIST, if we increase |Q| from 100 to 1000. Thus we choose

37

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

m=6
m=8

m=10
m=12

m=14

(a) SIFT, Effect of m, Time

 10

 100

 1000

 8 16 24 32 40 48 56 64

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

m=10
m=12

m=14
m=16

m=18

(b) GIST, Effect of m, Time

 1

 10

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

m=38
m=44

m=50
m=56

m=62

(c) PubChem, Effect of m, Time

Fig. 5. Effect of Partition Number

100 as the size of Q in our experiments.

We also study the effect of partition number on the query

processing performance. Figs. 5(a) – 5(c) show the query

response times on the three datasets by varying the number

of partitions. The general trend is that a smaller m performs

better under small τ settings. When τ increases, the best choice

of m slightly increases. The reason is: (1) When τ is small, a

small m is good enough. Dividing vectors into unnecessarily

large number of partitions yields very small partitions and hence

increases the frequency of signatures. (2) When τ is large, a

small m means more thresholds will be allocated to a partition,

and this results in more candidates. Hence a slightly larger m is

better in this case. Based on the results, we suggest user choose

m ≈ n
24 for GPH for good query processing performance.

E. Comparison with Existing Methods

We compare GPH with alternative methods (equipped with

the OS partitioning [34]) for Hamming distance search.

Index are compared first. Figs. 6(a) – 6(c) show the index

sizes of the algorithms on the three datasets. LSH, HmSearch,

and PartAlloc run out of memory for some τ settings on SIFT
and GIST. We only show the points when the memory can

hold their indexes. GPH consume more space than MIH due

to the machine learning-based technique to estimate candidate

numbers. Both algorithms consume less space than the other

exact competitors. This is expected as GPH and MIH enumerate

signatures on query vectors only. HmSearch and PartAlloc
enumerate 1-deletion variants on data vectors; i.e., removing an

arbitrary dimension from a partition and taking the rest as a

signature. The variants are indexed and this will increase their

index sizes. PartAlloc and LSH exhibit variable index sizes with

respect to τ . LSH has the smallest index size on PubChem,

but consumes much more space on the other two datasets. The

reason is that PubChem has much more dimensions than the

other two datasets. Hence given a τ , the equivalent Jaccard

threshold is higher on PubChem, resulting in less number of

signatures. The corresponding index construction times on GIST
are shown in Table IV. LSH runs out of memory when τ = 64,

and thus is shown for the other τ settings. The time of GPH
is decomposed into dimension partitioning and indexing. MIH
spends the least amount of time on index construction. Despite

 15000

 30000

 60000

 4 8 12 16 20 24 28 32

In
de

x
Si

ze
 (

M
B

)

Threshold

GPH
MIH

PartAlloc
LSH

(a) SIFT, Index Size

 2500

 5000

 10000

 20000

 40000

 80000

 8 16 24 32 40 48 56 64

In
de

x
Si

ze
 (

M
B

)

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

(b) GIST, Index Size

 3

 12

 48

 192

 768

 4 8 12 16 20 24 28 32

In
de

x
Si

ze
 (

M
B

)

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

(c) PubChem, Index Size

Fig. 6. Comparison with Alternatives - Index Size

TABLE IV
INDEX CONSTRUCTION TIME ON GIST (S)

τ MIH HmSearch PartAlloc LSH GPH

16 481 1681 1736 583 5026 + 560
32 481 1689 3244 5221 5026 + 560
48 481 1711 7600 64256 5026 + 560
64 481 1747 9605 N/A 5026 + 560

more time consumption on partitioning, GPH spends less time

indexing data objects than the other algorithms. We argue that

the partitioning can be done offline and the time is affordable.

Because the query workload Q for partitioning computation

consists of queries with varying thresholds, we can run the

partitioning once and use the same partitioning for different τ
settings in real queries. This is also the reason why GPH has

constant partitioning and indexing time irrespective of τ .

The candidate numbers are plotted in Figs. 7(a), 7(c),

and 7(e). The corresponding query response times are plotted

in Figs. 7(b), 7(d), and 7(f). For all the algorithms, candidate

numbers and running times increase when τ moves towards

larger values, and their trends are similar. Thanks to the tight

filtering condition and cost-aware partitioning and threshold

allocation, GPH is consistently smaller than MIH and HmSearch
in candidate size and faster than the two methods. The only

exception is that HmSearch has smaller candidate size when

τ = 4 on PubChem, but turns out to be slower than GPH.

This is because HmSearch generates many signatures whose

postings lists are empty, and this drastically increases signature

enumeration and index lookup times. Although PartAlloc has

a tight filtering condition and utilizes threshold allocation, it

is not as fast as GPH, and even slower than MIH. This result

showcases that PartAlloc’s partitioning and threshold allocation

is not efficient for Hamming distance search, though it pays off

on set similarity search. Another interesting observation is that

LSH does not perform well on highly skewed data. The reason is

that the hash functions may choose highly skewed and correlated

dimensions, and thus the selectively of the chosen signatures

becomes very bad. On PubChem, LSH’s performance is close

to a sequential scan. Overall, GPH is the fastest algorithm. The

speed-ups against the runner-up algorithms on the three datasets

38

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

 100000

 1x106

 1x107

 1x108

 4 8 12 16 20 24 28 32

A
vg

. C
an

di
da

te
 S

iz
e

Threshold

GPH
MIH

PartAlloc
LSH

(a) SIFT, Candidate Number

 100

 1000

 10000

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GPH
MIH

PartAlloc
LSH

(b) SIFT, Query Processing Time

 10000

 100000

 1x106

 1x107

 8 16 24 32 40 48 56 64

A
vg

. C
an

di
da

te
 S

iz
e

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

(c) GIST, Candidate Number

 10

 100

 1000

 10000

 8 16 24 32 40 48 56 64

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

(d) GIST, Query Processing Time

 1000

 10000

 100000

 1x106

 4 8 12 16 20 24 28 32

A
vg

. C
an

di
da

te
 S

iz
e

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

(e) PubChem, Candidate Number

 1

 10

 100

 4 8 12 16 20 24 28 32

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

(f) PubChem, Query Processing Time

Fig. 7. Comparison with Alternatives - Candidate Number & Time

are up to 22, 21, and 135 times, respectively.

F. Varying Number of Dimensions

We compare the five competitors to evaluate their performances

when varying the number of dimensions. We sample 25%, 50%,

75%, and 100% dimensions from the three datasets and run the

experiment. τ = 12, 24, and 12 for the 100% sample on the

three datasets, respectively, and we let τ change linearly with

the number of sampled dimensions. Figs. 8(a) – 8(c) show the

query response times of the algorithms on the three datasets. We

observe that the times of all the algorithms increase with n. There

are two factors: (1) Although τ and n increase proportionally, the

number of results increases with n due to dimension correlations.

Hence we have more candidates to verify. (2) The verification

cost increases with n because more dimensions are compared.

Nonetheless, GPH is always the fastest algorithm among the

competitors, especially on the more skewed PubChem.

G. Varying Skewness

We study the performance by varying skewness 4. As seen

from Fig. 1, the relationship between skewness and dimensions

is approximately linear (except PubChem) on most datasets. On

the basis of this observation, the synthetic dataset is generated as

follows: The number of dimensions is 128. The mean skewness

is controlled by a parameter γ, and the skewnesses of the 128

dimensions range from 0 to 2γ. We set τ = 12. The query

processing times are plotted in Fig. 8(d). The general trend is

that all the algorithms become slower on more skewed data. This

is expected as signatures become less selective. Nonetheless,

thanks to variable partitioning and threshold allocation, GPH is

the fastest among the five competitors.

To demonstrate the robustness of GPH, we show that even if

the distribution of real queries is different from the sample to

4See the footnote in Section I for the measurement of dataset skewness.

 100

 1000

 10000

 32 64 96 128

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Dimension

GPH
MIH

PartAlloc

(a) SIFT, Effect of n, Time

 10

 100

 1000

 10000

 64 128 192 256

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Dimension

GPH
MIH

HmSearch

PartAlloc
LSH

(b) GIST, Effect of n, Time

 1

 10

 100

 1000

 220 440 660 880

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Dimension

GPH
MIH

HmSearch

PartAlloc
LSH

(c) PubChem, Effect of n, Time

 0.1

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5

A
vg

. Q
ue

ry
 T

im
e

(m
s)

 γ

GPH
MIH

HmSearch

PartAlloc
LSH

(d) Synthetic, Effect of Skewness, Time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GPH-0.1 GPH-0.5

(e) Synthetic, γD = 0.5, γq = 0.1,
Time

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3 6 9 12

A
vg

. Q
ue

ry
 T

im
e

(m
s)

Threshold

GPH-0.1 GPH-0.5

(f) Synthetic, γD = 0.1, γq = 0.5,
Time

Fig. 8. Varying Number of Dimensions and Skewness

compute partitioning, our method retains good performance. We

generate a synthetic dataset with a γ of 0.5, and then compute

partitioning with two query workloads: γ = 0.5 (denoted GPH-

0.5) and γ = 0.1 (denoted GPH-0.1), respectively. Then we run

a set of queries with a γ of 0.1. The gap between GPH-0.5

and GPH-0.1 can be regarded as the extent to which GPH’s

performance deteriorates in the presence of a different query

distribution. Then we set γ to 0.1 for the synthetic dataset and

run the experiment again. Results are plotted in Figs. 8(e) – 8(f).

It can be seen that although GPH computes partitioning with

a workload whose distribution is different from real queries,

the query processing performance is almost the same. A slight

difference can be noticed only when τ is as large as 12, where the

query processing speed drops by 11.1% and 4.4%, respectively.

VIII. RELATED WORK

The notion of Hamming distance search was first proposed

in [21]. Due to its wide range of applications, the problem has

received considerable attention in the last few decades.

A few studies focused on the special case when τ = 1 [3],

[4], [19], [32]. Among them, the method by [19] indexes all

the 1-variants of the data vectors to answer the query in O(1)
time and O(

(
n
τ

)
) space. A data structure was proposed in [4] to

answer this special case in O(1) time using O(n logm) space

by a cell probe model with word size m.

For the general case of Hamming distance search, the method

by [9] is able to answer Hamming distance search in O(m+
logτ (nm)+occ) time and O(n logτ (nm)) space, where occ is

the number of results. In practice, many solutions are based on

the pigeonhole principle to convert the problem to sub-problems

with a threshold τ ′, where τ ′ < τ . In [27], [16], [23], vectors

are divided into a number of partitions such that query results

must have at least one exact match with the query in one of the

39

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

partitions. The idea of recursive partitioning was covered in [20].

Before that, a two-level partitioning idea was adopted by the

PartEnum method [1]. Song et al. [26] proposed to enumerate

the combinations within threshold τ ′ in each partition to avoid

the verification of candidates. Ong and Bober [24] proposed an

approximate method utilizing variable length hash keys. In [34],

vectors are divided into
⌊
τ+3
2

⌋
partitions, and the threshold of

a partition can be either 0 or 1. Deng et al. [10] also proposed

to use different thresholds on partitions, including −1, 0, and 1,

and the thresholds are computed by the allocation algorithm.

To handle the poor selectivity caused by data skewness

and dimension correlations, existing work mainly focused on

two strategies. The first is to perform a random shuffle [1]

in original dimensions to avoid highly correlated dimensions

in same partitions. The second is to perform a dimension

rearrangement [34], [30], [18] to minimize the correlation

between dimensions in each partition. These methods are able

to answer queries efficiently on slightly skewed datasets, but the

performances deteriorate on highly skewed datasets.

We note that a strong form of the pigeonhole principle was

introduced in [6] which states that given n positive integers

q1, . . . , qm, if (
∑m

i=1 qi−m+1) objects are distributed into m
boxes, then either the first box contains at least q1 objects, . . .,
or the n-th box contains at least qn objects. Although the general

pigeonhole principle proposed in this paper coincides with the

above strong form, by integer reduction and ε-transformation, the

general pigeonhole principle is not limited to positive integers

(this is the reason why GPH performs well on skewed data) and

the tightness of threshold allocation is proved, hence providing

a deeper understanding of the pigeonhole principle.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to similarity

search in Hamming space. Observing the major drawbacks

of the basic pigeonhole principle adopted by many existing

methods, we developed a new form of the pigeonhole principle,

based on which the condition of candidate generation is tight.

The cost of query processing was modeled, and then an

offline dimension partitioning algorithm and an online threshold

allocation algorithm were devised on top of the model. We

conducted experiments on real datasets with various distributions,

and showed that our approach performs consistently well on all

these datasets and outperforms state-of-the-art methods.

Our future work includes extending general pigeonhole

principle to other similarity constraints. Another direction is to

explore the techniques to dealing with the parallel case.

Acknowledgements. J. Qin, Y. Wang, and W. Wang are

partially supported by ARC DP170103710, and D2DCRC

DC25002 and DC25003. C. Xiao and Y. Ishikawa are supported

by JSPS Kakenhi 16H01722. X. Lin is supported by NSFC

61672235, ARC DP170101628 and DP180103096. We thank

the authors of [10] for kindly providing their source codes.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In
VLDB, 2006.

[2] J. M. Borwein and D. H. Bailey. Mathematics by experiment - plausible
reasoning in the 21st century. A K Peters, 2003.

[3] G. S. Brodal and L. Gasieniec. Approximate dictionary queries. In CPM,
pages 65–74, 1996.

[4] G. S. Brodal and S. Venkatesh. Improved bounds for dictionary look-up
with one error. Inf. Process. Lett., 75(1-2):57–59, 2000.

[5] A. Z. Broder. On the resemblance and containment of documents. In
SEQS, 1997.

[6] R. Brualdi. Introductory Combinatorics. Math Classics. Pearson, 2017.
[7] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash

by continuation. In ICCV, pages 5609–5618, 2017.
[8] S. Chaidaroon and Y. Fang. Variational deep semantic hashing for text

documents. In SIGIR Conference, pages 75–84, 2017.
[9] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and

indexing with errors and don’t cares. In STOC, pages 91–100, 2004.
[10] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method

for exact set similarity joins. PVLDB, 9(4):360–371, 2015.
[11] D. R. Flower. On the properties of bit string-based measures of chemical

similarity. Journal of Chemical Information and Computer Sciences,
38(3):379–386, 1998.

[12] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one
billion vectors: re-rank with source coding. CoRR, abs/1102.3828, 2011.

[13] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for
approximate string searches. In ICDE, 2008.

[14] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin. Approximate
nearest neighbor search on high dimensional data - experiments, analyses,
and improvement (v1.0). CoRR, abs/1610.02455, 2016.

[15] K. Lin, H. Yang, J. Hsiao, and C. Chen. Deep learning of binary hash
codes for fast image retrieval. In CVPR Workshops, pages 27–35, 2015.

[16] A. X. Liu, K. Shen, and E. Torng. Large scale hamming distance query
processing. In ICDE, pages 553–564, 2011.

[17] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised hashing for fast
image retrieval. In CVPR Conference, pages 2064–2072, 2016.

[18] Y. Ma, H. Zou, H. Xie, and Q. Su. Fast search with data-oriented multi-
index hashing for multimedia data. TIIS, 9(7):2599–2613, 2015.

[19] U. Manber and S. Wu. An algorithm for approximate membership checking
with application to password security. Inf. Process. Lett., 50(4):191–197,
1994.

[20] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates for
web crawling. In WWW, pages 141–150, 2007.

[21] M. Minsky and S. Papert. Perceptrons - an introduction to computational
geometry. MIT Press, 1987.

[22] R. Nasr, R. Vernica, C. Li, and P. Baldi. Speeding up chemical searches
using the inverted index: The convergence of chemoinformatics and text
search methods. J. Chem. Inf. Model, 2012.

[23] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space
with multi-index hashing. In CVPR, pages 3108–3115, 2012.

[24] E. Ong and M. Bober. Improved hamming distance search using variable
length hashing. In CVPR Conference, pages 2000–2008, 2016.

[25] H. Park and L. Stefanski. Relative-error prediction. Statistics & Probability
Letters, 40(3):227 – 236, 1998.

[26] J. Song, H. T. Shen, J. Wang, Z. Huang, N. Sebe, and J. Wang. A
distance-computation-free search scheme for binary code databases. IEEE
Trans. Multimedia, 18(3):484–495, 2016.

[27] Y. Tabei, T. Uno, M. Sugiyama, and K. Tsuda. Single versus multiple
sorting in all pairs similarity search. Journal of Machine Learning Research
- Proceedings Track, 13:145–160, 2010.

[28] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 30(11):1958–1970, 2008.

[29] S. A. Vinterbo. A note on the hardness of the k-ambiguity problem.
Technical report, Harvard Medical School, 06 2002.

[30] J. Wan, S. Tang, Y. Zhang, L. Huang, and J. Li. Data driven multi-index
hashing. In ICIP Conference, pages 2670–2673, 2013.

[31] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A
survey. CoRR, abs/1408.2927, 2014.

[32] A. C.-C. Yao and F. F. Yao. Dictionary look-up with one error. J.
Algorithms, 25(1):194–202, 1997.

[33] W. Zhang, K. Gao, Y. Zhang, and J. Li. Efficient approximate nearest
neighbor search with integrated binary codes. In ICMM Conference, pages
1189–1192, 2011.

[34] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu. Hmsearch: an efficient
hamming distance query processing algorithm. In SSDBM, page 19, 2013.

40

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 17,2022 at 03:56:19 UTC from IEEE Xplore. Restrictions apply.

