
Autocompletion for Prefix-Abbreviated Input

Sheng Hu

Nagoya University

& Kyoto University

hu@db.ss.is.nagoya-u.ac.jp

Chuan Xiao�
Nagoya University

& Osaka University

chuanx@nagoya-u.jp

Jianbin Qin

Shenzhen Institute of Computing

Sciences, Shenzhen University

jqin@sics.ac.cn

Yoshiharu Ishikawa

Nagoya University

ishikawa@i.nagoya-u.ac.jp

QiangMa

Kyoto University

qiang@i.kyoto-u.ac.jp

ABSTRACT
Query autocompletion (QAC) is an important interactive

feature that assists users in formulating queries and saving

keystrokes. Due to the convenience it brings to users, QAC

has been adopted inmany applications, includingWeb search

engines, integrated development environments (IDEs), and

mobile devices. For existingQACmethods, users have toman-

ually type delimiters to separate keywords in their inputs.

In this paper, we propose a novel QAC paradigm through

which users may abbreviate keywords by prefixes and do not

have to explicitly separate them. Such paradigm is useful for

applications where it is inconvenient to specify delimiters,

such as desktop search, text editors, and input method edi-

tors. E.g., in an IDE, users may input getnev and we suggest
GetNextValue. We show that the query processing method

for traditional QAC, which utilizes a trie index, is inefficient

under the new problem setting. A novel indexing and query

processing scheme is hence proposed to efficiently complete

queries. To suggest meaningful results, we devise a ranking

method based on a Gaussian mixture model, taking into con-

sideration the way in which users abbreviate keywords, as

opposed to the traditional ranking method that merely con-

siders popularity. Efficient top-k query processing techniques
are developed on top of the new index structure. Experiments

demonstrate the effectiveness of the new QAC paradigm and

the efficiency of the proposed query processing method.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of thisworkownedbyothers than the author(s)must behonored.Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to

ACM.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319858

CCS CONCEPTS
• Information systems→Query suggestion;

KEYWORDS
autocompletion, query suggestion, prefix-abbreviated input

ACMReference Format:
ShengHu,ChuanXiao�, JianbinQin,Yoshiharu Ishikawa,andQiang
Ma. 2019. Autocompletion for Prefix-Abbreviated Input. In 2019 In-
ternational Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands.ACM, New York, NY, USA,

18 pages. https://doi.org/10.1145/3299869.3319858

1 INTRODUCTION
Query autocompletion (QAC) is an important feature that

guides users to type a query correctly while reducing the

effort to submit the query. As a user types the query into

the search box, QAC gives possible suggestions that contain

the currently input characters as a prefix. In addition to its

prevalence among many visible features of Web search en-

gines, QAC has also been adopted in various applications

where typing is laborious and error-prone, such as command

shells, desktop search, and mobile devices. Due to its impor-

tance, QAC has received considerable attention from infor-

mation retrieval [4, 41, 50] and database research communi-

ties [11, 12, 25, 32, 36].

For existing QAC methods [4, 12, 32, 41, 50] (including

type-ahead search [25, 27] that directly identifies matching

documents), users need to manually separate keywords in

the input and then the system takes the input characters

as the prefixes of keywords to match. Hence a limitation is

that these methods are unable to handle the case when users

prefer not to manually separate keywords in the input or

it is inconvenient to do so. Such input is common in many

applications, includingWeb servicesmanaging large datasets:

• In text editors and integrated development environments

(IDEs), users may type a variable/function name using con-

catenation of keyword prefixes or first letters, e.g., typing

tbf for textbf and getnev for GetNextValue. A similar

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

211

https://doi.org/10.1145/3299869.3319858
https://doi.org/10.1145/3299869.3319858

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

feature is provided by Eclipse, a prevalent Java IDE, but it

only supports acronyms composed of first letters.

• In input method editors (IMEs), a common practice is to

save keystrokes by omitting some vowels since typing is

laborious and error-prone on mobile devices, e.g., typing

luoshj for luoshanji (Los Angeles) in Chinese pinyin.
• In desktop search, users may search files using the first few

characters of the words in file names, e.g., typing nagoulh
to search NagoyaULetterHead.pdf.
• For search engines, when searching proper names compris-

ing multiple morphemes, a common scenario for biologi-

cal and medical terms, users may want to give only a few

characters for each morpheme, e.g., typing fuspch ginv
for fusospirochetal gingivitis, wheremorphemes are

separated by underline.

In this paper, we propose a novel QAC feature by which

users do not have to explicitly separate keywords. We focus

on the input of abbreviations using keywords’ prefixes. This is
common in practice: by the statistics of ALLIE [46], a dataset

of twomillion medical terms extracted fromMEDLINE, the

abbreviations of 82% terms belong to this category. Inputting

user-defined keywords’ prefixes to look for terms is recog-

nized and utilized by the participants in a study on QAC for

medical vocabulary [39]. For software engineering, a user

study showed that using acronym-like abbreviated input of

multiple keywords reduces 30% time and 41% keystrokes over

conventional code completion [19]. Prefix-abbreviated in-

put is also partially supported by IMEs like Sougou Pinyin,

though such feature does not respond quickly on cloud dictio-

naries. We call the proposed feature query autocompletion

for prefix-abbreviated input (QACPA). It provides a solution
to the demand in the aforementioned applications. To save

keystrokes, users may also input the prefixes of the first few

keywords instead of all; e.g., we suggest GetNextValue for
the query getn, where Value is saved. Despite focusing on
prefix-abbreviated input, QACPA is designed to be extensible
to the following cases: (1) keywords are manually separated

(traditional QAC), (2) keywords are skipped, (3) keywords are

abbreviated by non-prefixes, and (4) full-text search for terms.

Most traditional QACmethods rely on a trie to index data

strings and process queries. For QACPA, one may also in-

dex data strings
1
in a trie and design a baseline algorithm to

traverse the trie incrementally to find matching data strings.

The nodes matched by the query are called active nodes. The
efficiency critically depends on the number of active nodes

per keystroke and the time complexity of finding an active

node. Since usersmay not separate keywords in the input, the

number and the time complexity (discussed in Section 2.2) are

bothO(|T |), where |T | denotes the number of nodes in the trie,

1
In this paper, we assume to perform autocompletion over a pre-defined

dictionary of data strings, in line with [12].

in the worst case and typically large for online query process-

ing, rendering this algorithm inefficient for QACPA.With the

growing popularity of online text editors/IDEs (e.g., Overleaf

and IBM Bluemix) and cloud IMEs, the demand on efficiency

is increasing. E.g., for popular cloud IMEs like Sougou Pinyin,

the number of active users is over 300 million per day [34].

Seeing the inefficiencyof the trie-basedmethod forQACPA,

we design an index, called nested trie, composed of an outer

trie and a number of inner tries nested on outer trie nodes.

Based on this index,we are able to reduce the number of nodes

matched by the query, exploiting the shared characters in the

indexed keywords. The index also includes the data structure

to quickly identify these matching nodes. Hence an efficient

query processing algorithm is devised. We show that the

number of active nodes by this algorithm is at most 2
|q |−1

per

keystroke and practically very small (4 nodes per keystroke

on ALLIE). The time complexity of finding an active noden is

O(|In |), where |In | is the number of intervals (formally defined

in Section 4.2) to cover the underlying data strings of n. By
several optimizations, this process is reduced to sublinear

time and very fast in practice.

To rank results for suggestions, in contrast to many tra-

ditional QACmethods that consider only string popularity

(static scores), we develop a ranking method for QACPA by

combining string popularity and the way in which users ab-

breviating keywords. A Gaussian mixture model is utilized to

predict the probability that a user abbreviates keywords into

a given set of prefixes observed in the input. We also present

a top-k query processing algorithm to efficiently compute the

top-k answers with respect to the new ranking method by

integrating a series of early termination techniques.

Experiments are conducted on real datasets that cover sev-

eral applications of QACPA. The results demonstrate the ef-

fectiveness of QACPA: it saves an average of around 20%

keystrokes compared to traditional QAC. The experiments

also show that the proposed ranking method remarkably

improves the accuracy, and the proposed query processing

algorithm has superior performance to alternative solutions

with up to two orders of magnitude speedup.

Our main contributions are summarized as follows.

(1) We propose a novel QAC feature by which users may

abbreviate and concatenate keywords by prefixes.

(2) We design an indexing and query processing method to

efficiently complete the queries by the new QAC feature.

(3) We propose a ranking method and integrate it into our

query processing method for efficient top-k retrieval.

(4) We perform extensive experiments on real datasets. The

results demonstrate the effectiveness of the new QAC

feature and the efficiency of the query processingmethod.

The rest of our paper is organized as follows: Section 2

defines the problem and introduces preliminaries. Section 3

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

212

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 1: Example dataset S .

ID String Popularity
s1 AddNextValue 0.3

s2 GenNewValue 0.1

s3 GenNullValue 0.3

s4 GetNextChar 0.2

s5 GetNextValue 0.6

s6 GetNextVector 0.4

s7 GetTimerOfDay 0.5

s8 GroupNewValue 0.1

s9 ReadNextValue 0.2

presents the index structure. The query processing algorithm

appears in Section 4. Section 5 introduces the rankingmethod

and the algorithm for fast top-k retrieval. Section 6 discusses

miscellaneous extensions, including skipping keywords, non-

prefix abbreviations, full-text search, and data updates. Ex-

perimental results and analyses are reported in Section 7.

Section 8 reviews related work. Section 9 concludes the paper.

2 PRELIMINARIES
2.1 ProblemDefinition
Σ is a finite alphabet of symbols; each symbol is also called

a character. A string s is an ordered array of symbols drawn

from Σ. |s | denotes the length of s . s[i] is the i-th character of
s , starting from 1. s[i . . j] is the substring between position i
and j. ∗ is a Kleene star to represent a string of any number

of characters, including an empty string. Given two strings

s1 and s2, s1 is a prefix of s2, denoted by s1 ⪯ s2, iff s1 =
s2[1 . . i], 1 ≤ i ≤ |s1 |. We also use the notation

←−s to denote

any prefix of s . s1s2 denotes the concatenation of s1 and s2.
An array [s1, . . . , sn] (n ≥ 1) is called a segmentation of s , iff
s = s1s2 . . . sn . Each si is called a segment of s .

Let S be a dataset of strings. Each string si ∈ S is seg-

mented into a set of substrings, called keywords. This is done
by delimiters (white space, punctuation, capital letters, etc.) or

morphemes/syllables, depending on the application scenario.

For ease of exposition, we assume Σ consists of English letters

only and use capital letters to denote the initial characters of
keywords. Table 1 gives an example dataset S . AddNextValue
is segmented into three keywords: Add, Next, and Value.
Next we define related concepts for prefix-abbreviated in-

put. Consider a string s segmented into keywords [s1, . . . , sn].
Given a query string q, we say q is a prefix-abbreviated match
of s , denoted by q ⊑ s , iff q = ←−s1

←−s2 . . .
←−si , 1 ≤ i ≤ n; in

other words, q is the concatenation of the prefixes of s’s
first i keywords. E.g., gene is a prefix-abbreviated match of

GetNextValue, because ge and ne are the prefixes of Get and
Next, respectively. In the rest of the paper, we use the term

“PA-match” short for prefix-abbreviated match, while the

1

2

3

4

5

6

7

8

9

10

11

12

13

s1

14

15

16

17

18

19

20

21

22

23

24

s2

25

26

27

28

29

30

31

32

s3

33

34

35

36

37

38

39

40

41

s4

42

43

44

45

46

s5

47

48

49

50

51

s6

52

53

54

55

56

57

58

59

60

s7

61

62

63

64

65

66

67

68

69

70

71

72

s8

73

74

75

76

77

78

79

80

81

82

83

84

85

s9

A

d

d

N

e

x

t

V

a

l

u

e

G

e

n

N

e

w

V

a

l

u

e

u

l

l

V

a

l

u

e

t

N

e

x

t

C

h

a

r

V

a

l

u

e

e

c

t

o

r

T

i

m

e

O

f

D

a

y

r

o

u

p

N

e

w

V

a

l

u

e

R

e

a

d

N

e

x

t

V

a

l

u

e

Figure 1: Trie index for the baselinemethod.

term “match” still means a character-by-character manner.

Moreover, characters match case-insensitively unless we

say they “strictlymatch” 2.
Onemaynotice that if a PA-match occurs, the initial charac-

ters of s’s keywords yield a segmentation of the query string,

[
←−s1 , . . . ,

←−si]. So users do not have to explicitly specify where
to segment the query. Next we define our problem.

Problem 1. Given a dataset of strings S , a query string q, a
query autocompletion for prefix-abbreviated input (QACPA) is
to find all the strings si ∈ S , such that q ⊑ si . The results are
computed incrementally as the user types in characters.

Given the dataset in Table 1 and a query geneva, QACPA
returns s2 and s5 as results. Since the number of results may

be large in real applications, we may sort them by a ranking

function and return the top-k ones.We assumeS and its index,
if there is any, are stored in main memory to process QACPA.

2.2 BaselineMethods
Most prevalent QACmethods [3, 4, 25, 27, 32, 41, 42] adopt a

trie index to process queries. For QACPA, we may also index

data strings in a trie and design a baseline algorithm. Figure 1

shows the trie for the strings in Table 1. String IDs are linked

2
The notion of strict match is to enforce the initial character of a keyword to

match an initial one, and a non-initial character to match a non-initial one.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

213

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

Algorithm 1:QACPA-Trie (q,T)
Input :q is a query string,T is a trie built on S .
Output :{ si }, such that si ∈ S and q ⊑ si .

1 A← { the root ofT } ; /* active node set */

2 foreach keystroke q[i] do
3 A′ ← ∅;

4 foreach n ∈ A do
5 if n has a child n′ through non-initial character q[i]

then
6 A′ ← A′ ∪ {n′ };

7 foreach n’s descendant n′ do
8 if the incoming edge of n′ is initial character q[i]

and there does not exist any node on the path
from n to n′ through an initial character then

9 A′ ← A′ ∪ {n′ };

10 A← A′;

11 R ← ∅;

12 foreach n ∈ A do
13 R ← R ∪ string IDs stored in the subtree rooted at n;

14 return TopK(R);

Table 2: Active nodes by the baseline algorithm.

Key ∅ g e n e v a

Active 1 14 15 16 18 20 21

Nodes 17 35 42 43

34

to the end of strings. The query processing algorithm (pseudo-

code inAlgorithm 1) consists of two phases. In the searching
phase (Lines 1 – 10), for every keystroke, it traverses the trie

to find the prefixes PA-matched by the query string. A key-

stroke can either match a non-initial character of the current

keyword (Line 5) or the initial character of the next keyword

(Line 8). The frontiers of the PA-matched prefixes are called

active nodes. In the result fetching phase (Lines 11 – 14), it
calculates the union of the active nodes’ underlying strings

and returns the top-k ones sorted by a ranking function.

Example 1. Consider a query string q = geneva. Table 2
shows the active nodes (numbered in Figure 1) for each keystroke
using the baseline algorithm. For keystroke n, nodes 16 and 17
are both active though 16 is 17’s parent. This is because Gen (16)
and GenN (17) are PA-matched through different segmentations
ofgen.Weneed to keep both of them for future keystrokes.s2 and
s5 are PA-matched by the query string as they are the underlying
strings of nodes 21 and 43, respectively.

The efficiency of query processing mainly depends on two

factors: the number of active nodes and the cost of finding

them. Both result in considerable overhead for the baseline

algorithm:

• In real data, it is common for data strings to share initial

characters of keywords. However, they might be indexed

in different branches in the trie, and the baseline algorithm

goes through all these branches. In Example 1, s2 and s5

share initial characters G, N, V in all their keywords. The

algorithm has to include both 20 and 42 as active nodes to

guarantee the correctness. This yields a worst-caseO(|T |)
number of active nodes per keystroke, where |T | is the
number of nodes in the trie.

• As the user types a keystroke, the algorithm has to traverse

the subtree rooted at every active node to find new active

ones (Line 8), because the keystroke can match initial char-

acters that are not directly connected to the current active

nodes. In Example 1, for keystroke v, the baseline algorithm
has to find out if there is a V in the subtrees rooted at nodes
18 and 35, respectively. This yields a worst-caseO(|T |) time

complexity to find an active node.

Besides this baseline algorithm, another possibility is to

index keywords separately and enumerate all possible ways

of query segmentation. The techniques for multiple keyword

type-aheadsearch[25]ormulti-dimensional substringsearch[16,

22] are then utilized to process the segments. Although it

does not suffer the aforementioned drawbacks, it requires an

intersection of the string ID lists for all the keywords that

contain a query segment as prefix, in order to find the strings

PA-matched by the whole query string. E.g., for a query seg-

mentation [ge, ne, va], it has to intersect the string IDs for
the keywords beginning with ge, ne, or va. Although the

processing of such intersection can be accelerated using the

method in [25, 26] (identifying the shortest list and checking

if the string IDs in this list exist in all the other lists using a for-

ward index), there are still 2
|q |−1

ways to segment the query

string, each involving 1 to |q | string ID lists. Hence the total

number of lists to bemerged is 2
|q |−2 · (|q | + 1), resulting in an

O(2 |q |−2 · (|q | + 1) · L) time complexity, where L is the average
length of the shortest one among the 1 to |q | lists to merge.

Since the lists can be very long for short query segments, the

cost becomes prohibitive as the query length grows.

We may also convert the QACPA semantics to a regular

expression, e.g., ˆG(e|[a-z]∗E)(n|[a-z]∗N) for a QACPA

query gen. Then a regular expression search algorithm [3] is

applied to find the matching strings in S . It simulates a DFA

in the trie that indexes the data strings. For the converted

pattern, this algorithm is equivalent to the trie-based baseline

algorithm, because matching sub-patterns like [a-z]∗E is

exactly the process of traversing subtrees to find the next

non-initial character and the other sub-patterns are character-

by-character match. Other existing regular expression search

methods, suchas [33, 53], eitherhave to scanall the strings inS
or rely onfiltering techniques that exploit selective substrings

in the pattern, which hardly exist in the converted pattern. In

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

214

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

1

2

3

4

5

6

7 8

9

10

11

12

13

14

A

N

V

G

N

C V

T

O

D

R

N

V

(a)

5

24

25

6

26

9

27

28

29

30

e

n t

r

o

u

pN

T

N N
T

N

N

N

N

(b)

Figure 2: The outer trie (a) and an inner trie rooted at
node 5 (b). Shortcuts are shown in dashed links.

addition, QACPA can be regarded as a subsequence search

with prefix constraints. One may find the data strings that

contain the query as a subsequence, using the subsequence

search algorithm [2], and then check if they satisfy the prefix-

abbreviated condition. But this method only applies to small

datasets since the space complexity isO((|S | + |Σ|)N), where
N is the sum of string lengths in S .

3 INDEXING
Seeing the inefficiencies of the aforementioned approaches,

we design a new index to efficiently process QACPA.

Our index is called a nested trie in which a number of tries,

called inner tries, are nested inside a trie, called the outer trie.
To construct the nested trie, for each data string in S , we pick
the initial characters of its keywords, and index them in the

outer trie. Then for each node n in the outer trie, we index

the corresponding keyword in the data string in an inner trie

rooted at n. We say a node/edge is an outer trie node/edge, if

it exists in the outer trie. If a node/edge exists only in an inner

trie, we say it is an inner node/edge. The root of the nested

trie is defined as the root of the outer trie.

Example 2. For the strings in Table 1, we first collect the
initial characters of keywords: ANV, GNC, GNV, GTOD, and RNV.
Figure 2(a) shows the outer trie for the initial characters. For
inner tries, we consider an example rooted at node 5, which
represent the initial characters of the first keywords of s2 – s8.
The keywords are Gen, Get, and Group. We index them in a trie
rooted at node 5, shown in Figure 2(b).

In addition to the above structure, we add links, called

shortcuts, from inner nodes to outer nodes. For any inner

node n, we use the term initial node to denote the root of

the inner trie that contains n. For each non-initial character
in a data string, if it has a succeeding keyword in the data

string, then for the inner node n that corresponds to the non-

initial character, we add a link from n to the outer node of

the succeeding keyword. The label of the link is the initial

character of the succeeding keyword. E.g., in Figure 2(b), node

27 has a succeeding keyword New, whose outer node is node
6. We add a shortcut from node 27 to 6 with label N. For the
sake of space-efficiency, these links do not have to be fully

materialized. Let n′ be the initial node of n. We observe that

the destinations of the shortcuts from n are always a subset
of the destinations of the outer edges from n′. Thus, we refer
to these outer edges, and at n we store this subset with a bit
vector (the size is the degree ofn′ in the outer trie). The i-th bit
represents if n has a shortcut whose destination is the same

as the i-th outer edge, sorted by the alphabetical order, from
n′. E.g., in Figure 2(b), to retrieve the shortcut(s) from node

27, we refer to its initial node, node 5. It has outer edges to

nodes 6 and 9. We have a vector of two bits at node 27: 10,
meaning that node 27 has only the first edge, which goes to

node 6. By encoding shortcuts in bit vectors, the nested trie

for the strings in Table 1 is shown in Figure 3.

Compared to the trie index, the nested trie combines the

paths that share the initial characters of keywords. As wewill

see later, this reduces the number of active nodes in query

processing, and theactivenodes canbequickly identified.One

may notice that the nested trie can be constructed bymerging

nodes in the original trie. But our construction method has

two advantages: First, we do not need to build the original trie.

Second, every inner trie can be stored in a contiguous space

that enables data locality for fast access. Next we introduce

the nested trie-based query processing algorithm.

4 SEARCHINGALGORITHM
The searching phase of the query processing algorithm is

presented in this section. We first introduce how to gener-

ate active nodes using the nested trie and then describe the

necessary list merge procedure for correct result fetching.

4.1 Finding Active Nodes
In the nested trie, an active node n is a node such that there
exists at least one path, through edges and/or shortcuts, from

the root to n exactly matching the query. We start from the

root of the outer trie. For each keystroke, we find new ac-

tive nodes using existing ones (pseudo-code shown in Algo-

rithm 2). Given a keystroke, it can match either an initial or a

non-initial character. The nested trie makes it easy for both

matches. For a non-initial character,wefind anewactive node

following an inner edge (Line 5). For an initial characters, if

the current active node is an outer node, we follow an outer

edge (Line 8); otherwise, we jump to the outer node for the

succeeding keyword by a shortcut (Line 11).

Example 3. Consider the query string geneva in Example 1.
Table 3 shows the active nodes, as numbered in Figure 3, for each
keystroke using the nested trie-based algorithm. For keystroke

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

215

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

1

2

151

161

3

171

181

191

4

20

21

22

23

s1

5

2411

2510

6

3111

3201

3311

3411

7

38

39

40

s4

3501

3601

3701

8

41

42

43

44

s2 s3 s5 s8

45

46

47

48

49

s6

2611

9

501

511

521

10

531

11

54

55

s7

2710

2810

2910

3010

12

561

571

581

13

591

601

611

14

62

63

64

65

s9

d

d

e

x

t

a

l

u

e

e

n

e

w

x

t

h

a

r

u

l

l

a

l

u

e

e

c

t

o

r

t

i

m

e

f

a

y

r

o

u

p

e

a

d

e

x

t

a

l

u

e

A
G

R

N

V

N

C V

T

O

D

N

V

Figure 3: A nested trie. Outer nodes aremarked in grey.
Outer edges are shown in red dashed links. Inner edges
are shown in black solid lines. Inner node numbers are
subscripted by bit vectors for shortcuts, if there is any.

n, we jump from node 24 to 6 by a shortcut, which refers to the
outer edge from node 5 to 6. For keystroke v, we jump from node
31 to 8 in the same way. Compared with the baseline algorithm,
active nodes are saved for keystrokes n, the second e, v, and a.

For the nested trie-based algorithm, the number of active

nodes per keystroke is at most equal to the number of ways to

segment the query, hence 2
|q |−1

(in Algorithm 2, we have one

active node for the first keystroke, and each existing active

node generates at most two new active nodes for any other

keystroke) in contrast to the baseline algorithm’sO(|T |). |q | is
usually small in QAC tasks. The algorithm also avoids travers-

ing entire subtrees to match characters. The time complexity

of computing an active node isO(1) in Algorithm 2, but we

need an additional cost to report correct results, as explained

in the rest of this section.

4.2 Merging Lists of Intervals
In the nested trie-based algorithm, the query might not PA-

match all the underlying strings of the active nodes; e.g., in

Example 3, the query string geneva has node 41 as its ac-

tive node, but it PA-matches only two of the four underlying

Algorithm 2:QACPA-Nested-Trie-Search (q,T)
1 A← { the root ofT } ; /* active node set */

2 foreach keystroke q[i] do
3 A′ ← ∅;

4 foreach n ∈ A do
5 if n has a child n′ through inner edge q[i] then
6 A′ ← A′ ∪ {n′ } ; /* for non-initial

character */

7 if n is an outer node then
8 if n has a child n′ through outer edge q[i] then
9 A′ ← A′ ∪ {n′ } ; /* for initial

character */

10 else
11 if n has a shortcut q[i] to n′ then
12 A′ ← A′ ∪ {n′ } ; /* for initial

character */

13 A← A′;

Table 3: Active nodes by the nested trie-based algo-
rithm.

Key ∅ g e n e v a

Active 1 5 24 6 31 8 41

Nodes 25

strings: s2 and s5. The reason is that all the data strings G∗Na
(except those having an initial character between G and N) are
indexed under node 41, while there are multiple paths from

the root to node 41, each representing a different segmenta-

tion of the query string andhence different underlying strings.

The searching algorithm reaches node 41 through only one

of these paths.

In order not to report false positives, our remedy is to equip

each node with a sorted list of intervals to indicate the strings

whose prefixes strictly match one (and by the construction

of nested trie, only one) path from the root of the nested trie

to the node. Take node 31 in Figure 3 as an example. The

prefixes of s2, s4, s5, s6, and s8 strictly match one path from

the root to node 31; e.g., for s4, we have 1→ 5→ 24→ 26

⇒ 6→ 31, where→ is via an edge and⇒ is via a shortcut.

Thus, we store a list of intervals { [2, 2], [4, 6], [8, 8] } at node
31 to represent these strings. To compute the intervals, given

a string, for each node passed or added when building the

nested trie, we insert the string ID to the list of intervals of

this node. Let In denote the stored list of intervals of n, and
⊗ denote the operation of merging two lists of intervals; i.e.,

{ x1, . . . ,xm } ⊗ {y1, . . . ,yn } = { xi ∩ yj | 1 ≤ i ≤ m ∧ 1 ≤
j ≤ n ∧ xi ∩ yj , ∅ }, where each xi oryi denotes an interval.
We have the following property.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

216

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Algorithm 3:QACPA-Nested-Trie-MonitorList (q,T)

1 Jroot ← [1, |S |];

2 foreach keystroke q[i] do
3 if Algorithm 2 finds an active node n′ from n then
4 Jn′ ← MergeLists(Jn , In′);
5 if Jn′ = ∅ then
6 Do not insert n′ into active node setA′;

Proposition 1. Consider a path n1, . . . ,nk from the root
of the nested trie to an active node ni . All the strings in In1

⊗

In2
. . . ⊗ Ink are PA-matched by the query string q.

By this property, we can merge the lists of intervals along

the path while propagating active nodes in the searching

phase, and ensure all the data strings in the resulting list after

merge have no false positives. The union of the resulting lists

for all the active nodes contains all the PA-matched strings,

hence producing no false negatives. In addition, it is easy to

see that if a resulting list is empty at a node n, no string will
be reported for n and any future active node n′ propagated
from n. In this case, we do not insert n into the new active

node set. With this optimization, it is guaranteed that the

nested trie-based algorithm always outperforms or equals the

baseline algorithm in terms of active node number:

Lemma 1. Given a dataset S and a queryq, for any keystroke
of q, the number of active nodes produced by Algorithm 2 is
always less than or equal to that produced by Algorithm 1.

The pseudo-code of the above process is given in Algo-

rithm 3. It keeps track of the merged result in a list Jn for

the path from the root of the nested trie to an active node n.
Initially, we start from the root and set Jroot to include all the
strings in S (Line 1). Whenever we find a new active node

n′ from a current one n by Algorithm 2, it computes Jn′ by
merging Jn and In′ (Line 4). To implement Algorithm 3, we

integrate it into Algorithm 2 by placing Lines 4 – 6 of Algo-

rithm 3 after Lines 5, 8 and 11 of Algorithm 2. Next we show

how this works with an example.

Example 4. Consider Example 3. The stored lists of intervals
of each active node en route is given in the table below. We
start with J1 = [1, 9] and perform list merge at each step while
generating active nodes. The resulting lists are also given in the
table below. Node 41 is reached through the following path: 1
→ 5→ 24⇒ 6→ 31⇒ 8→ 41. Finally, we have J41 = { [2, 2],
[5, 5] } for the only active node 41. s2 and s5 are the only data
strings PA-matched by the query.

4.3 Optimizing List Merge
Wemay use the sweep line algorithm [40] to process the list

merge. The time complexity of computing an active node is

n n′ List of Intervals In′ Merged Result Jn′

N/A 1 { [1, 9] } { [1, 9] }

1 5 { [2, 8] } { [2, 8] }

5 24 { [2, 7] } { [2, 7] }

24 6 { [2, 6], [8, 8] } { [2, 6] }

24 25 { [2, 3] } { [2, 3] }

6 31 { [2, 2], [4, 6], [8, 8] } { [2, 2], [4, 6] }

31 8 { [2, 3], [5, 6], [8, 8] } { [2, 2], [5, 6] }

8 41 { [2, 3], [5, 5], [8, 8] } { [2, 2], [5, 5] }

thusO(|Jn | + |In′ |), where | · | denotes the number of intervals

in a list, opposed to the baseline algorithm’sO(|T |) time.

Due to the merge operation, |Jn | is very small and far less

than |In′ | in practice: in our experiment on the ALLIE dataset

of twomillionmedical terms, theaverage |J | over1,000queries
peaks to 5.4 at a query length of 6, but the average |I | is up
to 387 times of |J |. By regarding |Jn | as a constant number,

the time complexity becomesO(|In′ |). As we go deeper in the
nested trie, the intervals in the stored lists become scattered

and |In′ | increases. This incurs significant overhead for the
merge operation.

We develop two techniques to optimize list merge. The

first optimization is to speed up merge operations. For each

interval [u,v] in Jn , we use a binary search with u as the

key to seek the first interval in In′ that may overlap [u,v].
The time complexity isO(|Jn | log |In′ | + |J

′
n |), and reduced to

O(log |In′ |)when |Jn | is small. The second optimization is to

reduce redundant merges by the following properties:

Proposition 2 (Properties of List Merge).

For any lists of intervalsX ,Y , andZ , (X ⊗Y)⊗Z = X ⊗(Y ⊗Z).
For any pair of outer nodes n and n′, if n is an ancestor of n′,
then In ⊗ In′ = In′ .
For any pair of nodesn andn′ in an inner trie, ifn is an ancestor
of n′, then In ⊗ In′ = In′ .

By the three properties, if we follow a path n,n1, . . . ,nk
in the nested trie such that there is no shortcut in n1, . . . ,nk ,
then the result of list merge Jn ⊗ In1

. . . ⊗ Ink = Jn ⊗ Ink ; i.e.,
we may consider only the nodes at the two ends and skip the

others. Thus, we delay the merge operation by pinning n and

updating n′ as the algorithm searches for active nodes, and

invoke it onlywhenn andn′ are both right before shortcuts or
n′ is reached by the last keystroke. TheMergeLists function
in Line 4, Algorithm 3 is implemented using this optimiza-

tion. The pseudo-code is given in Algorithm 4. If n and n′

are not connected by a shortcut, we continue Algorithm 3

until a shortcut is encountered (Line 5). Then we record Jn in
a temporary list J (Line 8), and continue Algorithm 3 again

until we are about to move from n′ to another node through
a shortcut (Line 9). The list merge is computed afterwards

using J and In′ (Line 10). Besides, the list merge is computed

instantlywhenever the last character of thequery is processed

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

217

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

Algorithm 4:MergeLists (Jn , In′)

1 if q[i] is the last character of q then
2 return Jn ⊗ In′

3 else
4 if n and n′ are not via a shortcut then
5 Continue Algorithm 3 until q[i] is the last character of

q or n and n′ are connected via a shortcut;
6 if q[i] is the last character of q then
7 return Jn ⊗ In′

8 J ← Jn ;

9 Continue Algorithm 3 until q[i] is the last character of q or
n′ has a shortcut q[i + 1];

10 return J ⊗ In′

(Lines 2, 7, and 10). This optimization saves us most merge

operations, as shown by this example:

Example 5. Recall Example 4. The first shortcut is encoun-
tered from node 24 to 6. Before that, all the merge operations are
skipped. We keep J = J24 = I24 until reaching another shortcut
fromnode 31 to 8. Sowe have J31 = J ⊗ I31. Thenwe keep J = J31
until reaching node 41 by the last input character. J41 = J ⊗ I41.
List merge is invoked only twice.

Since list merge is skipped for some nodes in the above

optimization, it is probable that Jn ⊗ In′ becomes empty at

some node but we fail to realize this. It does not cause false

query results because the empty set can always be found

whenever a merge operation is invoked, but it makes the

optimization generate false active nodes and violate Lemma 1.

It can be shown that as long as a shortcut occurs in the path to

n′, for the current and every subsequent keystroke, no matter

what type of edge – outer, inner, or shortcut – we go, there

always exists a case such that Jn⊗In′ = ∅. This suggests that in
theworst case,we cannot retainLemma1andat the same time

skip any post-shortcut list merge or any equivalent/weaker

operation (such as using Bloom filter [7]) for the empty-set

check. Nonetheless, the case of producing false active nodes is

rare for the above optimization. It significantly reduces query

processing time because of saving many merge operations,

and the number of active nodes is still much smaller than the

baseline algorithm, as we will see in the experimental results

reported in Section 7.3.

5 RANKINGANDTOP-KRESULT
FETCHING

5.1 Ranking for QACPA
Despite multiple ways to abbreviate a string in the input,

some prefixes are preferred by users. Based on our analysis

on the human-crafted prefix-abbreviations collected from

Amazon Mechanical Turk, most users prefer to input doc
when typing an abbreviation for document. This motivates us

to rank results by the likelihood of being the intended string

for the given input. Next we introduce the ranking method.

Given a data string s segmented into [s1, . . . , sn], we sup-
pose its firstm keywords have been abbreviated in the query

and the other (n−m)keywords are yet to be input. Thus,q ⊑ s ,
and q can be segmented into [q1, . . . ,qm] such that qi ⪯ si ,
1 ≤ i ≤ m ≤ n. For ease of exposition, we add (n −m) empty

strings, denoted by qm+1, . . . ,qn , into the segmentation of q,
so that q and s have the same number of segments.

The score of s is defined as the probability that s is the in-
tended string for thequery stringqwith respect to the segmen-

tations [q1, . . . ,qn]and [s1, . . . , sn], denotedbyscore(s,q) =
P(s1 . . . sn | q1 . . .qn). If there are multiple segmentations of

q yielding the PA-match (e.g., geet PA-matches GetEelTail
in two ways: [ge, e, t] and [g, ee, t]), we pick the one with
themaximum score of all these segmentations. For all the data

strings PA-matched by q, we rank them by decreasing order

of scores.

To compute score(s,q), by Bayes’ theorem, we have

score(s,q) = P(s1 . . . sn | q1 . . .qn)

=
P(q1 . . .qn | s1 . . . sn) · P(s1 . . . sn)

P(q1 . . .qn)

∝ P(q1 . . .qn | s1 . . . sn) · P(s1 . . . sn)

= P(q1 . . .qn | s1 . . . sn) · P(s).

The denominator P(q1 . . .qn) is safely discarded because it is
exactly P(q), which is the same for all the PA-matched strings.

P(s) is measured by the popularity of s , in line with many

traditional QACmethods. To compute P(q1 . . .qn | s1 . . . sn),
we assume that P(qi | si), 1 ≤ i ≤ n, are independent 3. Thus,
P(q1 . . .qn | s1 . . . sn) = P(q1 | s1) · . . . · P(qn | sn). We have

score(s,q) ∝ P(q1 | s1) · . . . · P(qn | sn) · P(s).

Each P(qi | si) is the probability that a user inputs qi as the
prefix of si . Specifically, we assume P(qi | si) = 1 when

m < i ≤ n. The reason is that these keywords are yet to be

input. In order not to make the score of s too low due to the

multiplication of a sequence, especially when n ≫m, we set

these probabilities always equal to 1.

To evaluate P(qi | si), 1 ≤ i ≤ m, we observe that users

abbreviate si toqi according to some patterns, such as cutting

off at consonants. We choose to describe such patterns using

vectors with the following features: (1) the length ofqi , (2) the
number of vowels in qi , (3) the number of consonants in qi ,
(4) if qi ends with a consonant, and (5) the value of i , i.e.,

3
Despite the independence, the value of i , i.e., the position of the keyword
in the string, plays a role in the probability. E.g., Value is more likely to

abbreviated to val if it is the first keyword of a data string, but to v if it is not.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

218

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

the position of si in the data string. A pattern is thus a 5-

dimensional vector. Note that si is not fully encoded in the

vector. The reason is explained: Let pi denote the pattern
(vector) by which a user abbreviate si to qi . Because it tells
howakeyword is abbreviated,P(qi , si) = P(pi)·P(si). Because
P(qi , si) = P(qi | si) · P(si), P(pi) is exactly P(qi | si).
We assume that each pattern is determined by a mixture

of a finite number of Gaussian distributions with unknown

parameters. A Gaussian mixture model (GMM) is utilized to

evaluate the probability (density function) of a pattern p:

P(p) =
l∑
i=1

wiN(p | µi , Σi).

l is the number of Gaussian distributions.wi is the weight

of a component Gaussian distribution. N(p | µi ,σi) is the
probability density function of p by a component Gaussian

distribution with mean µi and covariance matrix Σi . l is tun-
able. The other parameters can be learned by a clustering

with the expectation-maximization algorithm [13] over a set

of training data generated as follows: A sample of data strings

are given to users. Then we collect the prefixes input by the

users, and convert each (keyword, prefix) pair to a feature

vector as a training instance.

Example 6. Consider the data strings in Table 1 and a query
string genv. s2, s3, s5, and s6 are PA-matched strings. Suppose
k = 2. Suppose the P(qi | si) values evaluated by the GMM are
given in the table below.
(qi | si) (ge | Gen) (ge | Get) (n | New) (n | Null)

Prob. 0.4 0.3 0.4 0.2

(qi | si) (n | Next) (v | Value) (v | Vector)

Prob. 0.5 0.7 0.6

The following table shows the score computation and ranking
of the PA-matched data strings. We use the notation Pi short
for P(qi | si) in the table. P(s) is measured by data string’s
popularity, which has been given in Table 1. The score (last
column) is the product of the four preceding values. The top-k
results are s5 and s6.

ID String P(s) P1 P2 P3 score(s,q)
s2 GenNewValue 0.1 0.4 0.4 0.7 0.0112
s3 GenNullValue 0.3 0.4 0.2 0.7 0.0168
s5 GetNextValue 0.6 0.3 0.5 0.7 0.063
s6 GetNextVector 0.4 0.3 0.5 0.6 0.036

5.2 Efficient Top-k Result Fetching
Recall in Algorithm 3, a list of merged intervals for each ac-

tive node is obtained for result fetching. A naive approach to

retrieving top-k results is to iterate through all the strings in

these intervals and compute their scores. Themajor overhead

of this procedure is invoking the GMM to compute the proba-

bility P(qi | si). Since the number of strings in the intervals

might be large, especially for short queries, it is necessary

to devise an efficient top-k algorithm to reduce the GMM

computation. We propose two optimizations for this purpose.

The first optimization is to bound the maximum possible

score for the strings in the merged list of intervals. Recall the

merged list Jn and the stored list In at node n introduced in

Section 4.2. We have the following property.

Proposition 3. For any interval [u,v] ∈ Jn , there always
exists an interval [u ′,v ′] ∈ In , such thatu ′ ≤ u andv ′ ≥ v .

It states that every interval in Jn is a sub-interval of one in
In . Thus, the maximum possible scores of the strings in Jn are
upper-bounded by those in In . To compute the score for each

interval, we consider the root of the inner trie having n. Let d
denote the depth of this root in the outer trie. It can be seen

that all the data strings in In have at least d keywords, and

whenn becomes an active node, the queryq has exactlyd non-
empty segments. Thus, for each interval [u,v] ∈ In , we may

offline process the strings su , . . . , sv and use the maximum

to bound online queries. Given a string si , for each of its first
d keywords, denoted by sij (1 ≤ j ≤ d), we enumerate every

possible prefix

←−
sij of s

i
j and compute P(

←−
sij | s

i
j). Note that

when j = d , there is only one possible prefix because of the

match at n. The product of the maximum P(
←−
sij | s

i
j) values

are multiplied by the popularity of si to obtain the maximum

score of si amid all possible queries. We pick the maximum

among su , . . . , sv and store it along with [u,v] in the trie.
Then we design an online top-k result fetching algorithm

(Algorithm 5). It initializes a priority queueR for top-k results

(Line 1). For each active node n, it sorts the intervals in Jn
by decreasing order using the maximum scores stored at the

intervals of In (Line 3). Then for each interval [u,v] in Jn ,
we sequentially compute the scores of the strings in it and

update the priority queue (Lines 7 – 9). If we reach an interval

whose maximum score is no greater than the k-th result, the
processing of n is safely terminated (Lines 5 – 6).

The second optimization is to skip online GMM computa-

tion, exploiting the observation that the strings in the same

interval may share keywords and hence the same P(qi | si)
values. For any two adjacent strings si and si+1 in an interval
[u,v] ∈ In , we offline check the number of keywords they

share as prefix, and record this number at si+1, denoted by

si+1.spr . Recall Example 4. For node 8, in the interval [5, 6],
since s5 and s6 share the first two keywords Get and Next, we
store s6.spr = 2. For online query processing, if both si and
si+1 appear in an interval in Jn , we are able to skip the GMM

computation for the first si+1.spr keywords of si+1, since they
have just been computed. This optimization is integrated into

Line 8 of Algorithm 5. To exploit the keyword sharing effec-

tively, we sort the strings in S by the lexicographical order.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

219

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

Algorithm 5:QACPA-Nested-Trie-TopK (q,A, k)

1 R ← ∅ ; /* a priority queue of size k */

2 foreach n ∈ A do
3 Sort the intervals in Jn using the maximum scores of In ;

4 foreach [u,v] ∈ Jn do
5 if [u,v].max_score ≤ R[k].score then
6 break;

7 foreach i ∈ [u,v] do
8 if |R | < k or score(si ,q) > R[k].score then
9 R.insert(si);

10 return R

Example 7. Consider Example 6. Node 8 is the only active
node. J8 is { [2, 3], [5, 6] }. Suppose the maximum P(qi | si)
values for Gen, Get, New, Null, and Next are 0.4, 0.55, 0.45,
0.4, and 0.5, respectively. The P(qi | si) values for Value and
Vector are given in Example 6, as they are thed-th keyword and
have only one possible P(qi | si). Themaximum score of [2, 3] is
max(0.4× 0.45× 0.7× 0.1, 0.4× 0.4× 0.7× 0.3) = 0.0336. The
maximum score of [5, 6] ismax(0.55 × 0.5 × 0.7 × 0.6, 0.55 ×
0.5 × 0.6 × 0.4) = 0.1155. [5, 6] is scanned first due to larger
maximumscore.score(s5,q) = 0.063. Fors6, becauses6.spr = 2,
the GMM computation for the first two keywords is skipped.
score(s6,q) = 0.036. Because the maximum score of [2, 3] is
0.0336 < R[k].score = 0.036, we terminate the processing of
node 8. s5 and s6 are returned as top-k results.

6 EXTENSIONS
We discuss a series of major extensions of our method. The

extension to the case when keywords are manually separated

in the input (traditional QAC) is straightforward and omitted.

6.1 Skipping Keywords
Users may skip a number of keywords in the middle, e.g.,

typing geva for GetNextValue, where Next is skipped. In

this case, we modify our index as follows: For each node in

the outer trie, we add outer shortcuts from the node to its

descendants. For each node in the inner trie, we refer to the

outer shortcuts resident on the root of the inner trie, and use

bit vectors to indicate thedifference, the sameas the technique

proposed in Section 3. For the ranking method, we use the

GMM to evaluate the probability P(qi | si) for the skipped
keywords, setting qi as an empty string. This requires some

keywords to be skipped in the training data of theGMM.Then

we use the searching and ranking algorithms proposed in the

previous sections to process queries.

6.2 Non-prefix Abbreviated Input
Users may abbreviate keywords by non-prefixes, e.g., typing

bldg for building. Since most non-prefix abbreviations are

composed of consonant letters, we focus on the following

matching conditions: q ⊑ s , if there exists a segmentation

[q1, . . . ,qm] of q, such that ∀i ∈ [1 . .m], (1) qi is a subse-
quence of the segment si of s , (2) qi [1] = si [1], and (3) among

all the alignments in which qi is a subsequence of si , there
exists at least one alignment such that ∀j ∈ [1 . . |qi |], if qi [j]
and qi [j + 1] are aligned to si [j

′] and si [j
′ + α]where α > 1,

then qi [j + 1]must be a consonant letter. In short, the initial

character of a segment must match, and the non-consecutive

matching part consists of consonant letters only. Note that

we are not limited to this setting but just use it to describe the

extension. The index is modified as follows: For each node

in the inner trie, we add inner shortcuts from the node to its

descendants whose incoming edges are consonant letters. For

ranking, we add non-prefix abbreviations in the training data.

Then the proposed algorithms are used to process queries.

6.3 Full-text Search
Our method can be extended to support full-text search on

data strings, e.g., typing vage for GetNextValue. This is an
extension atop of the technique for skipping keywords, by

allowing keywords to match order-insensitively. Recall that

to handle skipping keywords, for each noden in the outer trie,
wehaveouter shortcuts fromn to its descendants. Tomake the

matchorder-insensitive,wealso addbackward shortcuts from

these descendants ton. The inner trie nodes can refer to these
backward shortcuts. Then we run the proposed algorithms

on this nested trie. Note that the list merge techniques (Sec-

tion 4) are useful to prevent generating toomany active nodes.

In addition, when traversing the nested trie, we record the

keywords that have been passed to avoid processing the same

keyword twice along a path; e.g., for the query vava, when
we have encountered the keyword Value in GetNextValue,
Value will not be processed again for the second va in the

query. Hence the algorithm can guarantee no false matches.

6.4 Updates in Data Strings
Insertion:Whenanewstringwhose ID isstr_id is inserted,we
add it into the nested trie with the method introduced in Sec-

tion 3. Then for each nodewith one path from the root strictly

matching a prefix of the new string, we add [str_id, str_id] to
its list of intervals. Deletion:When a stringwhose ID is str_id
is deleted, we delete the nodes and the edges in the nested trie,

if they are only used for this string. Then for each node having

this underlying string, we delete str_id from its list of inter-

vals. The above insertion and deletion may cause fragments

in the lists of intervals if updates are frequent. In this case, we

may record insertions in an auxiliary index which is also a

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

220

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 4: Statistics of datasets.

Dataset |S | Max.
|W |

Avg.
|W |

Max.
|s |

Avg.
|s |

Size

JAVA 0.29 M 15 3.3 74 19.1 5.6 MB

PINYIN 3.55 M 14 5.1 59 17.2 61.7 MB

UNIX 1.68 M 39 3.3 71 13.4 23.1 MB

ALLIE 2.36 M 43 4.8 225 27.9 65.1 MB

nested trie, and mark deleted strings in the main index but do

not remove any nodes or edges. The auxiliary index can be

merged with the main index through an offline logarithmic

merging [30]. Wemay also periodically reconstruct the index.

This is similar to many information retrieval solutions.

7 EXPERIMENTS
Wereport themost importantexperimental resultshere.Please

see Appendix B for the experiments on scalability, round-trip

time, updates, index, and extensions.

7.1 Experiment Setup
In the experiments, we use the following datasets that cover

the four applications listed in Section 1.

• JAVA is a dataset ofAPI names of theAwesome Java Project

onGitHub [47]. APIs are segmented by capital letters. Popu-

laritiesarecollected fromthesourcecodesof12projects [28].

• PINYIN is a dataset of Sougou cloud pinyin dictionary [43].

Words are segmented byChinese syllables.Weuse theword

frequencies in [44] as popularities.

• UNIX is a dataset of files in a UNIX archive [49] at ICM,

Poland. Paths and extensions are removed. Filenames are

segmented into keywords using PythonWordSegment [23].

We use the term frequencies in the dataset as popularities.

• ALLIE is a dataset of terms extracted fromMEDLINE [46].

Stringsaresegmented intomorphemesusingMorfessor [48].

We use the term frequencies in MEDLINE as popularities.

Table 4 shows dataset statistics, where |S | denotes the number

of distinct data strings, |W | denotes the number of keywords

in a data string, and |s | denotes the string length.
We randomly selected 5,000 data strings from each dataset.

The probability to choose a string is proportional to the popu-

larity. Then we collected human-crafted prefix-abbreviations

for the 5,000 strings from Amazon Mechanical Turk. There

were on average 172 workers on each dataset. We asked

them how they would like to input the query using abbre-

viations. 1,000 out of the 5,000 stringswere randomly selected

as queries. Since queries are usually short in QAC, we trun-

cated themat theendof aprefix if the lengthof aqueryexceeds

8. The remaining 4,000 strings were used to train the GMM.

The following algorithms are compared:

• Trie is the trie-based baseline algorithm for QACPA.

• SegEnum is the algorithm that enumerates all query seg-

mentations and matches keywords individually, followed

by an intersection.We choose the TASTIERmethod [25, 26]

tohandle thekeywordmatchingand intersection. It indexes

keywords in a trie and finds the intersected results with a

forward index.

• NT is thenested trie-based algorithmproposed in this paper.

The multi-dimensional substring search methods [16, 22]

are not compared due to less efficiency than TASTIER in

the intersection of string IDs for each segmentation. More-

over, we do not consider regular expression search [3, 33,

53] or subsequence search [2]. The reasons (equivalence to

Trie/prohibitive index size) have been explained in Section 2.
For ranking methods, we compare with the most popu-

lar completion method (MPC) used in previous work [4, 41,
42]. It ranks results by popularity. Our proposed ranking

method is referred to as APP (for abbreviation probability
and popularity). We use the following settings for l , the num-

ber of Gaussian distributions in the GMM, for the best overall

quality: JAVA – 9, PINYIN – 3, UNIX – 3, ALLIE – 6. For this

parameter setting, the best l tends to be small when keyword

are short or prefixes are less diversified.

The experiments were run on a PC with an Intel Xeon

E5-2637 (3.50GHz) CPU and 32GB RAM, running Ubuntu

14.04.5. The algorithms were implemented in C++ and in

main memory.

7.2 Evaluation of Effectiveness
We first compare the keystrokes of QACPAwith traditional

QAC. Table 5 reports the results with navigation, i.e., the

numbers of characters entered before the intended string

appears in the top-k suggestions plus the numbers of arrow

keys needed to navigate in the top-k list. Table 6 reports the

results without navigation, i.e., only the numbers of input

characters. The results are averaged over 1,000 queries when

k = 5 or 10. We also show the percentage of keystrokes saved

from traditional QAC, where users have to input a prefix

of data string but cannot skip any characters in the middle.

Compared to QAC, QACPA saves on average 19.4% and 21.6%

keystrokes, with and without navigation, respectively. This

indicates that using prefix-abbreviation remarkably reduces

the effort of typing, in general from 8 keystrokes to 6 or 7with

navigation, and from5or 6keystrokes to 4without navigation.

The advantage of QACPA is more significant on JAVA and

ALLIEas theyhavemorekeywords in adata string.The saving

is less significant on PINYIN due to the language factor: most

users prefer to input the whole first syllable (as a keyword) in

PINYIN, even with the QACPA feature. Nonetheless, QACPA

still saves around 9–11% keystrokes on PINYIN.

Then we compare the ranking methods. Wemeasure the

mean reciprocal ranks (MRR) here and report the success

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

221

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

Table 5: Keystrokes per query (with navigation).

Dataset k = 5 k = 10
QAC QACPA QAC QACPA

JAVA 8.84 6.78 (-23.30%) 8.83 6.76 (-23.44%)

PINYIN 8.55 7.74 (-9.47%) 8.54 7.73 (-9.48%)

UNIX 8.78 7.13 (-18.79%) 8.73 7.10 (-18.67%)

ALLIE 8.76 6.47 (-26.15%) 8.70 6.45 (-25.89%)

Table 6: Keystrokes per query (without navigation).

Dataset k = 5 k = 10
QAC QACPA QAC QACPA

JAVA 6.36 4.67 (-36.33%) 5.49 4.24 (-29.33%)

PINYIN 6.40 5.74 (-11.58%) 5.83 5.31 (-9.84%)

UNIX 6.22 4.72 (-31.62%) 5.37 4.22 (-27.24%)

ALLIE 6.28 4.32 (-45.35%) 5.46 3.96 (-37.89%)

rates in Appendix B.1. MRR is defined as the average recipro-

cal of the intended string’s ranking in the top-k suggestions

(counted as 0 if not appearing). The statistical significance

of the improvement is validated by paired t-tests (p < 0.05)
We set k = 5 and 10, and vary the query length from 2 to 8.

The results are reported in Table 7. We also show the relative

MRR improvement overMPC. Note that even a small absolute

difference in MRR could lead to considerable performance

gain [41, 50]. APP, the proposed ranking method, is better

thanMPC for almost all settings. The relative improvement is

more remarkable for short queries. The reason is that it is dif-

ficult to predict the intended string for short queries. A slight

change in the suggestions may cause considerable difference.

As the user types more keystrokes, the query becomes more

predictable. Increasing MRRs are observed for both APP and

MPC in this case, but APP still performs better thanMPC. An
exception is that both methods have zero MRR on PINYIN

when |q | = 2. It is very rare to use queries as short as 2 in

the collected prefixes for PINYIN. Both APP andMPC fail to

return any meaningful results in this case. On the contrary,

for the other query lengths on PINYIN, APP achieves the best

improvement overMPC. This is because the abbreviations
for PINYIN are less diversified and hence more predictable

than the other three datasets which are mostly English.

To compare k settings, k = 10 saves more keystrokes and

yields a better MRR, but k = 5 is also acceptable. Considering

the numbers of available suggestions in different applications,

we suggest using k = 10 for Web search and text editors, and

k = 5 for mobile applications.

7.3 Evaluation of Efficiency
For efficiency, we first evaluate the searching phase of the

query processing.We vary the query length and plot the aver-

age numbers of active nodes per query in Figures 4(a) – 4(d).

10
0

10
1

10
2

10
3

 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
A

c
ti
v
e
 N

o
d
e
s

Query Length

NT-NoOpt
NT

Trie

(a) JAVA

10
0

10
1

10
2

10
3

 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
A

c
ti
v
e
 N

o
d
e
s

Query Length

NT-NoOpt
NT

Trie

(b) PINYIN

10
0

10
1

10
2

10
3

 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
A

c
ti
v
e
 N

o
d
e
s

Query Length

NT-NoOpt
NT

Trie

(c) UNIX

10
0

10
1

10
2

10
3

10
4

 1 2 3 4 5 6 7 8

N
u
m

b
e
rs

 o
f
A

c
ti
v
e
 N

o
d
e
s

Query Length

NT-NoOpt
NT

Trie

(d) ALLIE

Figure 4: Number of active nodes.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 3 4 5 6 7 8

S
e
a
rc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-BSOnly

NT

Trie
SegEnum

(a) JAVA

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 1 2 3 4 5 6 7 8

S
e
a
rc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-BSOnly

NT

Trie
SegEnum

(b) PINYIN

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

S
e
a
rc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-BSOnly

NT

Trie
SegEnum

(c) UNIX

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

S
e
a
rc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-BSOnly

NT

Trie
SegEnum

(d) ALLIE

Figure 5: Searching time.

The results are accumulated, i.e., every active node en route

is counted towards the number. So it increases with the query

length. We also plot the results of our algorithmwithout the

optimization of skipping list merge (Proposition 2), referred

to asNT-BSOnly. It may produce fewer active nodes thanNT
since the optimization brings about false active nodes. It can

be seen that Trie’s number of active nodes surges at a query

lengthof 2. This is expected as it has to search thenodeswhose

incoming edge is an initial character and matches the second

character of the query. The number of such nodes is huge in

the trie.NT drastically reduces the active node number and

achieves a smooth increment w.r.t the query length. The gap

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

222

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 7: Mean reciprocal rank (in percentage).

Dataset k
|q | = 2 |q | = 4 |q | = 6 |q | = 8

APP MPC APP MPC APP MPC APP MPC

JAVA

5 0.74 (+40.90%) 0.52 25.89 (+7.67%) 24.04 60.14 (+3.19%) 58.27 84.95 (+0.13%) 84.83

10 1.04 (+29.39%) 0.80 27.27 (+5.35%) 25.88 61.10 (+3.27%) 59.16 85.04 (+0.13%) 84.92

PINYIN

5 0.00 (+0.00%) 0.00 4.06 (+49.01%) 2.72 40.37 (+18.34%) 34.11 73.59 (+6.07%) 69.37

10 0.00 (+0.00%) 0.00 4.88 (+34.45%) 3.63 41.66 (+15.14%) 36.18 74.38 (+5.72%) 70.35

UNIX

5 0.90 (+29.86%) 0.69 15.50 (+5.07%) 14.75 44.10 (+1.93%) 43.26 72.11 (+0.60%) 71.68

10 1.44 (+27.28%) 1.13 17.08 (+0.70%) 16.96 45.32 (+1.77%) 44.53 72.20 (+0.28%) 72.00

ALLIE

5 5.53 (+44.75%) 3.82 26.93 (+4.34%) 25.81 62.80 (+1.78%) 61.70 78.72 (+1.12%) 77.84

10 6.45 (+39.11%) 4.64 28.19 (+4.16%) 27.06 62.84 (+0.74%) 62.37 78.93 (+1.26%) 77.94

between the two algorithms is more remarkable on UNIX and

ALLIE due to the more diversity in the initial characters of

keywords, which makes Trie even worse. When the query

length is 2 on ALLIE, Trie produces 273 times more active

nodes thanNT.NT reports at most 35 active nodes at a query

length of 8, and hence only 4.4 nodes per keystroke. Besides,

the increase of active nodes caused by skipping list merge is

not obvious. The number of false active nodes is small and

only observed when the query length exceeds 5.NT reports
at most 10% more active nodes thanNT-BSOnly.

The times of the searching phasewith varying query length

are reported in Figures 5(a) – 5(d). To show the effect of the

optimizations on list merge, we also plot the performance

of NTwithout any optimization (referred to asNT-NoOpt)
or with the binary search optimization only (referred to as

NT-BSOnly). The result of SegEnum is also reported.NT is
much faster than Trie. The gap is even larger than that in

active nodes, becauseNT uses shortcuts to efficiently process

the match for initial characters while Trie traverses subtrees.
The maximum speedups over Trie on the four datasets are 44,
11, 144, and 486 times, respectively. SegEnum is the slowest

of these competitors. The intersection of string IDs is very

expensive and becomes even worse for longer queries. As for

the optimizations on list merge, both techniques are useful,

and skipping list merge saves more time than binary search.

We then evaluate the result fetching phase of the query

processing. For Trie, each node in the trie is equipped with an
interval to quickly identify the underlying strings. Then we

scan the underlying strings of active nodes and compute the

top-k stringsbyour ranking function.To study the effect of op-
timizating top-k computation, we also show the performance

of NTwithout any optimization (referred to asNT-NoOpt) or
with themaximum score optimization only (referred to asNT-
MSOnly). The result fetching time of SegEnum is very close

to Trie’s because both compute scores for all the PA-matched

strings, and thus it is not repeatedly shown. We set k = 10.

Figures 6(a) – 6(d) show the result fetching timeswith varying

query length. The times decrease for longer queries, because

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 6 7 8

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-MSOnly

NT
Trie

(a) JAVA

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 6 7 8

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-MSOnly

NT
Trie

(b) PINYIN

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 6 7 8

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-MSOnly

NT
Trie

(c) UNIX

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 6 7 8

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

Query Length

NT-NoOpt
NT-MSOnly

NT
Trie

(d) ALLIE

Figure 6: Result fetching time.

they are more selective and thus fewer data strings are com-

puted for scores.Without any optimization, the speed of NT’s
result fetching is similar toTrie’s. Both optimizations are effec-

tive, and sharing keywords is more useful than materializing

maximum scores. As a result,NT outperforms Trie by up to 33,
56, 10, and 12 times on the four datasets, respectively. The gap

is more significant on PINYIN for its less diversified spelling

fromwhich more keyword sharing can be exploited. For the

result fetching timesw.r.t.k , we refer readers to Appendix B.2.
The overall query processing times (k = 10) are plotted

in Figures 7(a) – 7(d). The overall trend is the query process-

ing time decreases with the query length for Trie and NT
but increases for SegEnum. The reason is the proportions

of searching and result fetching are different; e.g., for short

queries,TrieandNT spendmore timeonsearchingbut for long

queries, they spend more time on result fetching. SegEnum
is the slowest for its expensive enumeration of segmenta-

tions.NT is always the fastest. The overall speedup over the
runner-up, Trie, is up to 33, 54, 67, and 121 times on the four

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

223

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT
Trie

SegEnum

(a) JAVA

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT
Trie

SegEnum

(b) PINYIN

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT
Trie

SegEnum

(c) UNIX

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT
Trie

SegEnum

(d) ALLIE

Figure 7: Overall query processing time.

datasets, respectively. Another interesting observation is that

Trie regularly spends tens (and up to hundreds) of millisec-

onds processing a query, which is too long for online editors

and search engines. The time is reduced byNT tomilliseconds

and even less, showing the benefit of improving efficiency.

8 RELATEDWORK
Due to its important applications, especially forWeb search

engines, the research on QAC has received much attention in

the last few decades. We refer readers to two surveys for vari-

ous kinds of QAC [8, 24]. Early studies considered completing

the query at word [5] or phrase level [18, 32]. Fan et al. [15]
studied the suggestion on topic-based query terms. Bhatia

et al. [6] investigated the case when query logs are absent.

Recent trends feature a boom in context-aware QACwhere

user interactions are important [4, 31], as well as plenty of

work on presenting time-sensitive [42, 50], personalized [41],

or diversified results [9]. As for the quality of QAC, an experi-

mental evaluation was reported in [38] to compare various

ranking methods. In the database research community, Li et
al. designed the TASTIER system for type-ahead search on

relational data [25]. It employs a two-tier trie, but the second-

tier tries only reside on the leaf nodes of the first-tier trie, as

opposed to our nested-trie in which inner tries may reside on

the internal nodes of the outer trie. Some effort was dedicated

to error-tolerant QAC or fuzzy type-ahead search to allow

errors in the input, using edit distance constraints [12, 26, 52]

or Markov n-gram transformation model [14]. Cetindil et
al. [11] proposed a ranking method for error-tolerant QAC

using proximity information. Another popular direction is

location-aware QAC [21, 36, 54], which is useful for naviga-

tion tools. Another body of work aims at query reformulation

by taking a full query and making arbitrary modifications to

assist users [10, 20, 37]. In somestudies, queryautocompletion

and reformulation are both called query suggestion.

The tolerant retrieval problem [30] has been studied for

decades. An important query model is wildcard query, in

which a user may use a Kleene star to denote any number

of characters. A prevalent approach is to use permuterm in-

dex [17]. Another related problem is multi-dimensional sub-

string search [16, 22]. Both data objects and queries are tuples

consistingofd strings, regardedasd dimensions.Thegoal is to

finddata objects such that on eachdimension, the query string

is a substring of the query string. The difference from our

problem is that Kleene stars or dimensions are not explicitly

given inQACPA.Other related problems include subsequence

search [2] and regular expression search [3, 33, 53].

QACPA can be categorized as processing queries involving

abbreviations. Related work comes from human-computer

interaction [35, 51] and database research community [45]. In

addition, there are studies targeting transformation rules [1]

or synonyms [29] in the database area.

9 CONCLUSION
We proposed a new feature of query autocompletion which

takes prefix-abbreviated keywords as input. Compared to

traditional query autocompletion, the new feature supports

moreapplication scenarios, especially for those inwhichusers

may not explicitly specify delimiters of keywords. We first

analyzed the inefficiencies of the trie-based algorithm, which

was adopted by traditional query autocompletion, as well

as a few other possibilities, and then developed an efficient

indexingandqueryprocessingmethod tohandle thenewauto-

completion feature. To return meaningful results, we devised

a ranking method specific to the proposed autocompletion

paradigm and an efficient top-k result fetching algorithm. A

series of useful extensions were discussed. Experiments on

real datasets showed theeffectivenessof thenewtypeofquery

autocompletion and the superiority of the query processing

method over alternative solutions in terms of efficiency.

ACKNOWLEDGMENTS
ThisworkwassupportedbyJSPSKakenhiGrantNo.16H01722

andMIC SCOPE Grant No. 172307001.

REFERENCES
[1] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based frame-

work for record matching. In ICDE, pages 40–49, 2008.
[2] R. A. Baeza-Yates. Searching subsequences. Theor. Comput. Sci.,

78(2):363–376, 1991.

[3] R. A. Baeza-Yates and G. H. Gonnet. Fast text searching for regular

expressions or automaton searching on tries. J. ACM, 43(6):915–936,

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

224

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

1996.

[4] Z. Bar-Yossef and N. Kraus. Context-sensitive query auto-completion.

InWWW, pages 107–116, 2011.

[5] H. Bast and I. Weber. Type less, find more: fast autocompletion search

with a succinct index. In SIGIR, pages 364–371, 2006.
[6] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in the absence

of query logs. In SIGIR, pages 795–804, 2011.
[7] B. H. Bloom. Space/time trade-offs in hash codingwith allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[8] F.Cai andM. deRijke. A surveyof query auto completion in information

retrieval. Foundations andTrends in InformationRetrieval, 10(4):273–363,
2016.

[9] F.Cai, R.Reinanda, andM.deRijke. Diversifyingqueryauto-completion.

ACM Trans. Inf. Syst., 34(4):25:1–25:33, 2016.
[10] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, andH. Li. Context-aware

query suggestion by mining click-through and session data. In KDD,
pages 875–883, 2008.

[11] I. Cetindil, J. Esmaelnezhad, T. Kim, and C. Li. Efficient instant-fuzzy

search with proximity ranking. In ICDE, pages 328–339, 2014.
[12] S. Chaudhuri and R. Kaushik. Extending autocompletion to tolerate

errors. In SIGMOD, pages 707–718, 2009.
[13] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[14] H. Duan and B. P. Hsu. Online spelling correction for query completion.

InWWW, pages 117–126, 2011.

[15] J. Fan, H.Wu, G. Li, and L. Zhou. Suggesting topic-based query terms

as you type. InAPWeb, pages 61–67, 2010.
[16] P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-

dimensional substring indexing. In PODS, 2001.
[17] P. Ferragina and R. Venturini. The compressed permuterm index. ACM

Trans. Algorithms, 7(1):10:1–10:21, 2010.
[18] K. Grabski and T. Scheffer. Sentence completion. In SIGIR, pages 433–

439, 2004.

[19] S. Han, D. R. Wallace, and R. C. Miller. Code completion of multiple

keywords from abbreviated input. Autom. Softw. Eng., 18(3-4):363–398,
2011.

[20] Q. He, D. Jiang, Z. Liao, S. C. H. Hoi, K. Chang, E. Lim, and H. Li. Web

query recommendation via sequential query prediction. In ICDE, pages
1443–1454, 2009.

[21] S. Hu, C. Xiao, and Y. Ishikawa. An efficient algorithm for location-

aware query autocompletion. IEICE Transactions, 101-D(1):181–192,
2018.

[22] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-

dimensional indexing for strings. In SIGMOD, pages 403–414, 2000.
[23] G. Jenks. Python WordSegment. http://www.grantjenks.com/docs/

wordsegment/, 2018.

[24] U. Krishnan, A. Moffat, and J. Zobel. A taxonomy of query auto comple-

tion modes. InADCS, pages 6:1–6:8, 2017.
[25] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on relational

data: a TASTIER approach. In SIGMOD, pages 695–706, 2009.
[26] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead search.

VLDB J., 20(4):617–640, 2011.
[27] G. Li, J. Wang, C. Li, and J. Feng. Supporting efficient top-k queries in

type-ahead search. In SIGIR, pages 355–364, 2012.
[28] G. Little and R. C. Miller. Keyword programming in java. Autom. Softw.

Eng., 16(1):37–71, 2009.
[29] J. Lu, C. Lin, W. Wang, C. Li, and X. Xiao. Boosting the quality of

approximate string matching by synonyms. ACM Trans. Database Syst.,
40(3):15:1–15:42, 2015.

[30] C. D.Manning, P. Raghavan, andH. Schütze. Introduction to information
retrieval. Cambridge University Press, 2008.

[31] B. Mitra, M. Shokouhi, F. Radlinski, and K. Hofmann. On user interac-

tions with query auto-completion. In SIGIR, pages 1055–1058, 2014.
[32] A.Nandi andH.V. Jagadish. Effective phrase prediction. InVLDB, pages

219–230, 2007.

[33] G. Navarro. Nr-grep: a fast and flexible pattern-matching tool. Softw.,
Pract. Exper., 31(13):1265–1312, 2001.

[34] People’sDailyOnline. Sogou’s revenue increased53% in thefirst quarter

of this year, revenues boosted beyond expectations byAI technology (in

Chinese). http://it.people.com.cn/n1/2018/0426/c1009-29951829.html,

Apr. 26, 2018.

[35] S. Pini, S. Han, and D. R. Wallace. Text entry for mobile devices using

ad-hoc abbreviation. In AVI, pages 181–188, 2010.
[36] S. B. Roy and K. Chakrabarti. Location-aware type ahead search on

spatial databases: semantics and efficiency. In SIGMOD, pages 361–372,
2011.

[37] E. Sadikov, J. Madhavan, L. Wang, and A. Y. Halevy. Clustering query

refinements by user intent. InWWW, pages 841–850, 2010.

[38] G. D. Santo, R. McCreadie, C. Macdonald, and I. Ounis. Comparing

approaches for query autocompletion. In SIGIR, pages 775–778, 2015.
[39] M. Sevenster, R. C. van Ommering, and Y. Qian. Algorithmic and user

study of an autocompletion algorithm on a large medical vocabulary.

Journal of Biomedical Informatics, 45(1):107–119, 2012.
[40] M. I. Shamos and D. Hoey. Geometric intersection problems.

[41] M. Shokouhi. Learning to personalize query auto-completion. In SIGIR,
pages 103–112, 2013.

[42] M. Shokouhi and K. Radinsky. Time-sensitive query auto-completion.

In SIGIR, pages 601–610, 2012.
[43] Sougou Labs. Sougou Pinyin Dictionary. https://pinyin.sogou.com/

dict/, 2006.

[44] Sougou Labs. Sougou Pinyin Dictionary. http://www.sogou.com/labs/

resource/w.php, 2006.

[45] W. Tao, D. Deng, andM. Stonebraker. Approximate string joins with

abbreviations. PVLDB, 11(1):53–65, 2017.
[46] A. D. Team. Allie RDF Data. http://data.allie.dbcls.jp/index_en.html/,

2018.

[47] The Awesome Java Contributors. Awesome Java frameworks, libraries

and software. https://github.com/akullpp/awesome-java, 2018.

[48] S. Virpioja, P. Smit, and S.-A. Grönroos. Morfessor. http://morfessor.

readthedocs.io/, 2018.

[49] Warren Toomey. The Unix Archive. https://wiki.tuhs.org/doku.php?

id=source:unix_archive, 2018.

[50] S. Whiting and J. M. Jose. Recent and robust query auto-completion. In

WWW, pages 971–982, 2014.

[51] T.Willis,H.Pain, S.Trewin, andS.Clark. Informingflexible abbreviation

expansion for users with motor disabilities. In ICCHP, pages 251–258,
2002.

[52] C.Xiao, J.Qin,W.Wang,Y. Ishikawa,K.Tsuda, andK.Sadakane. Efficient

error-tolerant query autocompletion. PVLDB, 6(6):373–384, 2013.
[53] X. Yang, T. Qiu, B. Wang, B. Zheng, Y. Wang, and C. Li. Negative

factor: Improving regular-expression matching in strings. ACM Trans.
Database Syst., 40(4):25:1–25:46, 2016.

[54] R. Zhong, J. Fan, G. Li, K. Tan, and L. Zhou. Location-aware instant

search. In CIKM, pages 385–394, 2012.

A PROOFS
A.1 Proposition 1

Proof. We construct a string t by concatenating the label
of the edge or shortcut betweenni andni+1 for i ∈ [1 . .k − 1].
ByAlgorithm2, |q | = k−1 and t[i]matchesq[i],∀i ∈ [1 . . |q |].

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

225

http://www.grantjenks.com/docs/wordsegment/
http://www.grantjenks.com/docs/wordsegment/
http://it.people.com.cn/n1/2018/0426/c1009-29951829.html
https://pinyin.sogou.com/dict/
https://pinyin.sogou.com/dict/
http://www.sogou.com/labs/resource/w.php
http://www.sogou.com/labs/resource/w.php
http://data.allie.dbcls.jp/index_en.html/
https://github.com/akullpp/awesome-java
http://morfessor.readthedocs.io/
http://morfessor.readthedocs.io/
https://wiki.tuhs.org/doku.php?id=source:unix_archive
https://wiki.tuhs.org/doku.php?id=source:unix_archive

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

Suppose t is segmented into [t1, . . . , tl] by the initial char-
acters along the path n1, . . . ,nk . Given any string s (suppose
it is segmented into [s1, . . . , sm]) in In1

⊗ In2
. . . ⊗ Ink , by the

construction of the nested trie and the definition of the stored

list of intervals, for any node ni in {n2, . . . ,nk }, a prefix of
s strictly matches exactly one path from n1 to ni . Therefore,
l ≤ m, and∀i ∈ [1 . . l], ti [1] = si [1]; and∀i ∈ [1 . . l], we have
∀j ∈ [2 . . |ti |], ti [j] = si [j]. Therefore, ∀i ∈ [1 . . l], ti ⪯ si .

Because∀i ∈ [1 . . |q |],t[i]matchesq[i],q canbesegmented

into [q1, . . . ,ql] by the initial characters in t , and∀i ∈ [1 . . l],
qi ⪯ si . Therefore, q =

←−s1
←−s2 . . .

←−sl , i.e., q PA-matches s . □

A.2 Lemma 1
Proof. We create amap f from the nodes in the trie of S to

the nodes in the nested trie of S : For any noden in the trie, it is
mapped to a noden′ in the nested trie, such that the path from
the root of the trie to n strictly matches one path from the

root of the nested trie to n′. Because a path from the root of

the trie is exactly a prefix of a data string, by the definition of

the nested trie, each data string is strictly matched by at most

one path in the nested trie. Therefore f is surjective. Suppose

we are processing a character of q, and n′ becomes an active

node by Algorithm 2. By Proposition 1, there exists at least

one underlying string of n PA-matched by q. Without loss of

generality, we suppose there is only one such string, denoted

by s . By the definition of stored list of intervals, a prefix of s
matches one path from the root ton′. This prefix alsomatches

a path from the root of the trie, because otherwiseAlgorithm1

misses s as a result. Therefore the end of this path is an active
node in Algorithm 1. By the definition of f , f maps this node

to n′. Because f is surjective, the number of active nodes by

Algorithm 2 is at most equal to that by Algorithm 1. □

A.3 Proposition 2
Proof. Property1:LetX = { x1, . . . ,xm },Y = {y1, . . . ,yn },

and Z = { z1, . . . , zo }. By the definition of the ⊗ operation,

(X ⊗Y)⊗Z = { xi ∩yj ∩zk | 1 ≤ i ≤ m∧1 ≤ j ≤ n∧1 ≤ k ≤
o ∧xi ∩yj ∩ zk , ∅ }. Likewise,X ⊗ (Y ⊗Z) = { xi ∩yj ∩ zk |
1 ≤ i ≤ m ∧ 1 ≤ j ≤ n ∧ 1 ≤ k ≤ o ∧ xi ∩ yj ∩ zk , ∅ }.
Therefore, (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z).

Property 2: By the definition of the stored list of intervals,

for any string s ∈ In′ , s strictlymatches one path from the root

of the nested trie to n′. Because n is an ancestor of n′ in the

outer trie, this path must pass n. Therefore, s ∈ In , and hence
In ⊗ In′ = In′ . Property 3 can be proved in the same way. □

B ADDITIONAL EXPERIMENTS
B.1 Success Rates
Table 8 reports the success rates@k (i.e.,whether the intended
string appears in the top-k results) of APP andMPC for top-

1, top-2, and top-3 suggestions. We also show the relative

10
2

10
3

10
4

 10 20 30 40 50

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

k

NT-NoOpt
NT-MSOnly

NT
Trie

(a) JAVA

10
2

10
3

10
4

 10 20 30 40 50

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

k

NT-NoOpt
NT-MSOnly

NT
Trie

(b) PINYIN

10
2

10
3

 10 20 30 40 50

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

k

NT-NoOpt
NT-MSOnly

NT
Trie

(c) UNIX

10
2

10
3

10
4

 10 20 30 40 50

R
e
s
u
lt
 F

e
tc

h
in

g
 T

im
e
 (

µ
s
)

k

NT-NoOpt
NT-MSOnly

NT
Trie

(d) ALLIE

Figure 8: Result fetching timew.r.t. k .

improvement of APP over MPC. Similar to the results of

MRR (Table 7), APP performs better thanMPC for almost all

settings, and the relative improvement is more remarkable

when queries are short. A query length of 2 is a hard case for

bothmethods, as it is almost impossible topredict the intended

string given the very short input. When the query length is 4,

APP exhibits substantial and meaningful improvement over

MPC on JAVA, UNIX, and ALLIE. When the query length

reaches 6 or 8, the success rates of the twomethods become

close on the three datasets, but APP still performs better. On

PINYIN, because of the less diversified spelling, only long

queries (|q | ≥ 6) are predictable. APP delivers much higher

success rates thanMPC in this case.

B.2 Result Fetching w.r.t. k
Figures 8(c) – 8(d) show the result fetching times w.r.t. k . The
query length is 3. ForTrie, wewitness approximately constant

time, as it has to scan all the underlying strings of the active

nodes. ForNT, wewitnessmoderate increase (about 1.5 times)

whenkmoves from10 to 50. The superiority overTrie remains.

B.3 Scalability
We evaluate the scalabilities by varying dataset size. 20% to

100% data strings were sampled from the four datasets. The

query processing times when |q | = 3 are given in Figures 9(c)

– 9(d). SegEnum is not plotted for its slow speed. An approx-

imately linear growth w.r.t. the dataset size is observed for

both algorithms.NT has a slower growth rate than Trie.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

226

Autocompletion for Prefix-Abbreviated Input SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Table 8: Success rate (in percentage).

Dataset k
|q | = 2 |q | = 4 |q | = 6 |q | = 8

APP MPC APP MPC APP MPC APP MPC

JAVA

1 0.40 (+100%) 0.20 12.80 (+0%) 12.80 46.00 (+5.02%) 43.80 81.70 (+0.12%) 81.60

2 0.40 (+100%) 0.20 26.90 (+10.24%) 24.40 68.30 (+3.01%) 66.30 87.20 (+0.23%) 87.00

3 0.80 (+33.33%) 0.60 36.50 (+13.00%) 32.30 73.90 (+0.95%) 73.20 88.50 (+0%) 88.50

PINYIN

1 0 (+00%) 0.00 1.70 (+∞%) 0.00 25.00 (+20.19%) 20.80 63.00 (+10.72%) 56.90

2 0 (+00%) 0.00 3.60 (+44.00%) 2.50 38.70 (+11.85%) 34.60 71.30 (+3.18%) 69.10

3 0 (+00%) 0.00 4.90 (+28.94%) 3.80 47.40 (+7.48%) 44.10 77.40 (+2.38%) 75.60

UNIX

1 0.70 (+16.66%) 0.60 7.20 (+9.09%) 6.60 29.80 (+1.36%) 29.40 65.10 (+0.30%) 64.90

2 0.80 (+14.28%) 0.70 14.10 (+0.00%) 14.10 50.20 (+2.86%) 48.80 75.40 (+0.26%) 75.20

3 1.40 (+75.00%) 0.80 23.00 (+4.07%) 22.10 58.40 (+1.38%) 57.60 79.40 (+0.76%) 78.80

ALLIE

1 2.90 (+163.63%) 1.10 17.00 (+0%) 17.00 53.60 (+2.87%) 52.10 70.30 (+0.71%) 69.80

2 4.50 (+36.36%) 3.30 30.00 (+7.52%) 27.90 69.50 (+0.14%) 69.40 84.90 (+3.28%) 82.20

3 7.50 (+19.04%) 6.30 35.70 (+4.69%) 34.10 77.40 (+0.25%) 77.20 88.00 (+0.80%) 87.30

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.2 0.4 0.6 0.8 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Dataset Scale Factor

NT Trie

(a) JAVA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.2 0.4 0.6 0.8 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Dataset Scale Factor

NT Trie

(b) PINYIN

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.2 0.4 0.6 0.8 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Dataset Scale Factor

NT Trie

(c) UNIX

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.2 0.4 0.6 0.8 1

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Dataset Scale Factor

NT Trie

(d) ALLIE

Figure 9: Scalability.

B.4 Round-trip time
We evaluate the round-trip time in aWeb server setting. The

round-trip time is composed of three parts: network delay,

JavaScript front-end, and back-end query processing. Connec-

tions to our server were launched fromAustralia, Hong Kong,

Japan, and UK. PINYIN and ALLIE were chosen for this set of

experiments since they are used inWeb applications (cloud

IME and search engine, respectively). The query length is 3.

Thedecomposed round-trip times averagedover 1,000queries

are plotted in Figures 10(a) – 10(b). We observe that Trie con-
sumes 11.6 and 7.9 milliseconds in query processing, taking

around 60% and 51% round-trip time on the two datasets, re-

spectively. This means query processing is the bottleneck if

we use Trie. When there are 20 simultaneous connections, its

query processing exceeds the acceptable response time of 0.1

 0

 5

 10

 15

 20

 25

 30

Trie
N
T

Trie
N
T

Trie
N
T

Trie
N
T

Australia Hong Kong Japan UK

R
o
u
n
d
-T

ri
p
 T

im
e
 (

m
s
)

Algorithm

Query Proc.
JavaScript

Network

(a) PINYIN

 0

 5

 10

 15

 20

 25

 30

Trie
N
T

Trie
N
T

Trie
N
T

Trie
N
T

Australia Hong Kong Japan UK

R
o
u
n
d
-T

ri
p
 T

im
e
 (

m
s
)

Algorithm

Query Proc.
JavaScript

Network

(b) ALLIE

Figure 10: Round-trip Time.

second. In contrast,NT improves the query processing time

to 0.3 and 0.5 milliseconds, thereby drastically reducing the

round-trip time forWeb applications.

B.5 Evaluation of Index
Table 9 reports index sizes and construction times. For Trie,
the index includes the trie (|T | nodes) and the intervals for
result fetching. For SegEnum, it includes the trie, the inter-

vals for keyword fetching, and the forward index. ForNT, it
includes the nested trie (worst-case |T | nodes plus (|T | − 1)
shortcuts), the lists of intervals (worst-case (|T | · dmax) inter-

vals, where dmax is the maximum depth in the trie), and the

shared numbers of prefix keywords (worst-case (|T | −2) num-

bers) for adjacent strings. We use the radix tree to compress

all of them. SegEnum has the smallest index size among the

three algorithms because its trie is built on keywords rather

than data strings.NT’s index size is moderately larger than

Trie because of keeping additional information in the index

such as the lists of intervals. The construction time includes

building the index and computing offline information such as

maximum scores and shared numbers of keywords. All the

three algorithms are acceptable in index construction speed.

Trie is the fastest. NT and SegEnum are slower due to the

construction of additional data structure.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

227

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, NetherlandsSheng Hu, Chuan Xiao�, Jianbin Qin, Yoshiharu Ishikawa, and QiangMa

Table 9: Index size and construction time.

Dataset Size (MB) Time (s)
Trie SegEnum NT Trie SegEnum NT

JAVA 44 11 62 0.80 2.09 6.37

PINYIN 613 161 680 8.89 12.30 38.11

UNIX 275 96 461 3.37 13.03 12.58

ALLIE 359 118 685 7.00 88.81 58.38

B.6 Extensions
Weevaluatemajor extensionsofQACPA–skippingkeywords,

usingnon-prefixabbreviations, and full-text search–onUNIX

and ALLIE, which we believe are more suitable for such ex-

tensions from the application perspective. For skipping key-

words and using non-prefix abbreviations, queries and train-

ing examples were generated using the method described

in Section 7.1, except that users may skip keywords or use

non-prefix abbreviations. For full-text search, we reused the

queries for skipping keywords but randomly changed the

order of keywords’ prefixes.

We evaluate the effectiveness for the first two extensions.

Compared to standard QACPA, a slight decrease is observed

in keystroke saving andMRR for both extensions. E.g., for the

top-5 results onALLIE, on averagewe need to input 0.33more

keystrokes than standard QACPA if keywords are skipped

and 0.26 more keystrokes than standard QACPA if queries

are abbreviated by non-prefixes. This is because some strings

become top-k results by the semantics of the two extensions

but they are not intended strings.

Compared to standard QACPA, the index sizes of NT for
extensions are larger. On UNIX, the size increases by 2.2, 6.0,

and 4.2 times for the three extensions, respectively. OnALLIE,

it increases by 2.6, 6.3, and 4.7 times, respectively.

We adaptTrie and SegEnum for skipping keywords,Trie for
non-prefixes, andSegEnum for full-text search.Thequerypro-

cessing times are shown in Figures 11(a) – 11(f). Compared to

standard QACPA, both Trie andNT spend more time process-

ing queries,while SegEnumhas almost the sameperformance.

This is expected, because compared to the algorithms for stan-

dard QACPA, Trie and NT need to traverse more nodes to

seek results, but SegEnum only differs in the keyword order

check, which is the final step after the list merge. Nonetheless,

NT is still significantly faster than Trie and SegEnum. When

skipping keywords, the speedup over the runner-up, Trie, is
up to 10 times on UNIX and 7 times on ALLIE. When using

non-prefix abbreviations, the speedup is up to 20 and 31 times,

respectively. For full-text search, despite utilizing techniques

tailored to full-text search, SegEnum suffers from the enumer-

ation of segmentations due to the absence of delimiters in the

input. NT is faster than SegEnum by one to three orders of

magnitude.

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT
Trie

SegEnum

(a) UNIX - Skipping Keywords

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT
Trie

SegEnum

(b) ALLIE - Skipping Keywords

10
2

10
3

10
4

10
5

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT Trie

(c) UNIX - Using Non-prefix Abbrevia-

tions

10
3

10
4

10
5

10
6

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT Trie

(d) ALLIE - Using Non-prefix Abbrevia-

tions

10
2

10
3

10
4

10
5

10
6

10
7

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT SegEnum

(e) UNIX - Full-text Search

10
4

10
5

10
6

10
7

10
8

 1 2 3 4 5 6 7 8

Q
u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
 (

µ
s
)

Query Length

NT SegEnum

(f) ALLIE - Full-text Search

Figure 11: Query processing time for extensions.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

U
p
d
a
ti
n
g
 T

im
e
 (

µ
s
)

Ratio of Deletion to All Updates

JAVA
PINYIN

UNIX
ALLIE

Figure 12: Update processing time.

B.7 Updates
We evaluate the performance of processing update. 1,000

strings were randomly generated for insertions and 1,000

stringswere randomlysampled fromthedatasets fordeletions.

We use the techniques introduced in Section 6.4 for the single

index setting (i.e., no auxiliary index). Figure 12 shows the

processing times averaged over 1,000 updates by varying the

percentage of deletions from0% to 100%. Theprocessing times

are mostly in microseconds per update, and the general trend

is that they decreasewhenwe havemore deletions on the four

datasets. This is expected, because for most deletion queries

we only need to delete the string ID from the lists of intervals

for the nodes having this underlying string.

Research 3: Information Extraction SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

228

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Baseline Methods

	3 Indexing
	4 Searching Algorithm
	4.1 Finding Active Nodes
	4.2 Merging Lists of Intervals
	4.3 Optimizing List Merge

	5 Ranking and Top-k Result Fetching
	5.1 Ranking for QACPA
	5.2 Efficient Top-k Result Fetching

	6 Extensions
	6.1 Skipping Keywords
	6.2 Non-prefix Abbreviated Input
	6.3 Full-text Search
	6.4 Updates in Data Strings

	7 Experiments
	7.1 Experiment Setup
	7.2 Evaluation of Effectiveness
	7.3 Evaluation of Efficiency

	8 Related Work
	9 Conclusion
	References
	A Proofs
	A.1 Proposition 1
	A.2 Lemma 1
	A.3 Proposition 2

	B Additional Experiments
	B.1 Success Rates
	B.2 Result Fetching w.r.t. k
	B.3 Scalability
	B.4 Round-trip time
	B.5 Evaluation of Index
	B.6 Extensions
	B.7 Updates

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 18
 Mask co-ordinates: Horizontal, vertical offset 39.27, 718.25 Width 527.73 Height 21.07 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 18

 CurrentAVDoc

 39.2684 718.2521 527.7283 21.0708

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 18
 17
 17

 1

 HistoryList_V1
 qi2base

