
Generalizing the Pigeonhole Principle
for Similarity Search in Hamming Space
Jianbin Qin , Chuan Xiao , Yaoshu Wang, Wei Wang, Xuemin Lin, Fellow, IEEE,

Yoshiharu Ishikawa,Member, IEEE, and Guoren Wang ,Member, IEEE

Abstract—A distance search in Hamming space finds binary vectors whose Hamming distances are no more than a threshold from a

query vector. It is a fundamental problem in many applications, such as image retrieval, near-duplicate Web page detection, and

scientific databases. State-of-the-art approaches to Hamming distance search are mainly based on the pigeonhole principle to

generate a set of candidates and then verify them. We observe that the constraint by the pigeonhole principle is not always tight and

may bring about unnecessary candidates. We also observe that the distribution in real data is often skewed, but most existing solutions

adopt a simple equi-width partitioning and allocate the same threshold to all the parts, hence failing to exploit the data skewness to

optimize query processing. In this paper, we propose a new form of the pigeonhole principle which allows variable partitioning and

threshold allocation. Based on the new principle, we develop a tight constraint of candidates and devise cost-aware methods for

partitioning and threshold allocation to optimize query processing. In addition, we extend our methods to answer Hamming distance join

queries. We also discuss the application of the pigeonhole principle in set similarity search, a problem that can be converted to

Hamming distance search equivalently. Our evaluation on datasets with various data distributions shows the robustness of our solution

and its superior query processing performance to the state-of-the-art methods.

Index Terms—Hamming distance, similarity search, pigeonhole principle

Ç

1 INTRODUCTION

FINDING similar objects is a fundamental problem in data-
base research and has been studied for several deca-

des [47]. Amongmany types of queries to find similar objects,
Hamming distance search on binary vectors is an important
one. Given a query q, a Hamming distance search finds all the
vectors in a dataset whose Hamming distances to q are no
greater than a threshold t. Answering such queries efficiently
plays an important role in many applications, including Web
search, image search, and scientific database. For example:

� For image retrieval, images are converted to com-
pact binary vectors and those within a Hamming
distance threshold are identified as candidates for
further image-level verification [52]. Recently, deep
learning has become remarkably successful in image

recognition. Learning to hash algorithms that utilize
neural networks have been actively explored [10],
[23], [25]. In these studies, images are represented by
binary vectors and Hamming distance is utilized to
capture the dissimilarity.

� For information retrieval, state-of-the-art methods
represent text documents by binary vectors through
hashing [11]. Google converts Web pages into 64-bit
vectors and uses Hamming distance search to detect
near-duplicate Web pages [28].

� For scientific databases, a fundamental task in chem-
informatics is to find similar molecules [17], [31]. In
this task, molecules are converted into binary vec-
tors, and the Tanimoto similarity is used to measure
the similarity between molecules. This similarity
constraint can be converted to an equivalent Ham-
ming distance constraint [53].

The na€ıve algorithm to answer a Hamming distance

search query requires access and computation of every vec-

tor in the database; hence it is expensive and does not scale

well to large datasets. Therefore, there has been much inter-

est in devising efficient indexes and algorithms. Many exist-

ing methods [2], [24], [33], [53] adopt the filter-and-refine
framework to quickly find a set of candidates and then ver-

ify them. They are based on the na€ıve application of the
pigeonhole principle to this problem: If the n dimensions of

the vectors are vertically partitioned into m equi-width parts

(we assume nmodm ¼ 0 in this paper), then a necessary

condition for the Hamming distance of two vectors to be

within t is that they must share a part in which the Ham-
ming distance is within b tmc. This leads to a filtering condition,

� J. Qin is with the School of Informatics, the University of Edinburgh, UK.
E-mail: jqin@inf.ed.ac.uk.

� C. Xiao is with the Graduate School of Information Science and Technol-
ogy, Osaka University, and the Graduate School of Informatics, Nagoya
University, Japan. E-mail: chuanx@ist.osaka-u.ac.jp.

� Y. Wang is with Shenzhen Institute of Computing Sciences, Shenzhen
University, China. E-mail: yaoshuw@sics.ac.cn.

� W. Wang and X. Lin are with the School of Computer Science and
Engineering, the University of New South Wales, Sydney, NSW 2052,
Australia. E-mail: {weiw, lxue}@cse.unsw.edu.au.

� Y. Ishikawa is with the Graduate School of Informatics, Nagoya Univer-
sity, Nagoya 464-8601, Japan. E-mail: ishikawa@i.nagoya-u.ac.jp.

� G. Wang is with the School of Computer Science & Technology, Beijing
Institute of Technology, Beijing 100054, China. E-mail: wanggrbit@126.com.

Manuscript received 23 Sept. 2018; accepted 6 Feb. 2019. Date of publication
14 Feb. 2019; date of current version 11 Jan. 2021.
(Corresponding author: Chuan Xiao.)
Recommended for acceptance by P. K. Chrysanthis, B. C. Ooi, and J. Dittrich.
Digital Object Identifier no. 10.1109/TKDE.2019.2899597

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021 489

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4298-3215
https://orcid.org/0000-0002-4298-3215
https://orcid.org/0000-0002-4298-3215
https://orcid.org/0000-0002-4298-3215
https://orcid.org/0000-0002-4298-3215
https://orcid.org/0000-0001-7239-5134
https://orcid.org/0000-0001-7239-5134
https://orcid.org/0000-0001-7239-5134
https://orcid.org/0000-0001-7239-5134
https://orcid.org/0000-0001-7239-5134
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

and produces a set of candidate vectors, which are then ver-
ified by calculating the Hamming distances and comparing
with the threshold. As a result, the efficiencies of these
methods critically depend on the candidate size.

However, despite the success and prevalence of this
framework, we identify that the filtering condition has two
inherent major weaknesses: (1) The threshold on each part is
not always tight. Many unnecessary candidates are included
in consequence. For example, when m ¼ 3, the filtering con-
ditions for t in ½9::11� are the same (Hamming distance
� b tmc ¼ 3), and produce the same set of candidates.

(2) The thresholds on the m parts are evenly distributed. It
assumes a uniform distribution and does not work well
when the dataset is skewed. We find that many real datasets
are skewed to varying degrees and complex correlations
exist among dimensions. Fig. 1 shows that 8 out of 13 real
datasets have dimensions with skewness greater than 0.3,1

and 5 out of the 8 datasets contain a vector whose frequency
� 0:1 on a part, meaning that at least 1/10 data vectors
become candidates if the query matches the data vector on
this part.

In this paper, we propose a novel method to answer the
Hamming distance search problem and address the above-
mentioned weaknesses. We propose a tight form of the
pigeonhole principle named general pigeonhole principle.
Based on the new principle, the thresholds of the m parts
sum up to t �mþ 1, less than t, thus yielding a stricter fil-
tering condition than the existing methods. In addition, the
threshold on each part is a variable in the range of ½�1::t�,
where �1 indicates that this part is ignored when generat-
ing candidates. This enables us to choose proper thresh-
olds for different parts in order to improve query
processing performance. We prove that the candidate con-
dition based on the general pigeonhole principle is tight;
i.e., the threshold allocated to each part cannot be further
reduced.

To tackle data skewness and dimension correlations, we
first devise an online algorithm to allocate thresholds to m
parts using a query processing cost model, and then devise
an offline algorithm to optimize the partitioning of vectors
by taking account of the distribution of dimensions. The
proposed techniques constitute the GPH algorithm. We also
extend the algorithm to answer the Hamming distance
join queries that finds pairs of vectors in a dataset (or two
datasets) whose Hamming distances are no greater than
a threshold t. In addition, we discuss the relationship

between Hamming distance search and set similarity search
as they can be converted to each other and the pigeonhole
principle has been utilized to solve the latter. The discussion
reveals the fact that the prefix filter, a prevalent approach to
set similarity search, is an extension of the general pigeon-
hole principle. Experiments are run on several real datasets
with different data distributions. The results show that the
GPH algorithm performs consistently well on these datasets
and is faster than state-of-the-art methods by up to two
orders of magnitude.

Our contributions can be summarized as follows. (1) We
propose a new form of the pigeonhole principle to obtain a
tight filtering condition and enable flexible threshold alloca-
tion for Hamming distance search. (Section 3). (2) We pro-
pose an efficient online query optimization method to
allocate thresholds on the basis of the new pigeonhole prin-
ciple (Section 4). (3) We propose an adaptive partitioning
method to address the selectivity issue caused by data
skewness and dimension correlations (Section 5). (4) We
extend our algorithm to answer Hamming distance join
queries (Section 7). (5) We discuss the relationship with set
similarity search and the application of the (general)
pigeonhole principle (Section 8). (6) We conduct extensive
experimental study on several real datasets to evaluate the
proposed method (Section 9). The results demonstrate
the superiority of the proposed method over state-of-the-art
methods.

Compared to the conference version of this paper [37],
Sections 7, 8, and 9 (partially) are new materials.

2 PRELIMINARIES

2.1 Problem Definition
An object is represented by an n-dimensional binary vector
x. x½i� denotes the value of the ith dimension of x. Let
Dðx½i�; y½i�Þ ¼ 0, if x½i� ¼ y½i�; or 1, otherwise. The Hamming
distance between two vectors x and y, denoted byHðx; yÞ, is
the number of dimensions on which x and y differ

Hðx; yÞ ¼
Xn
i¼1

Dðx½i�; y½i�Þ:

Hamming distance is a symmetric measure. For brevity, we
also say there are Hðx; yÞ errors between x and y. The Ham-
ming distance search problem is defined as follows.

Problem 1 (Hamming Distance Search). Given a collection
of data objects R, a query object q, a Hamming distance search
is to find all the objects in R whose Hamming distances to q
are no greater than a threshold t, i.e., fx j x 2 R; Hðx;qÞ � tg.

2.2 Basic Pigeonhole Principle
Most exact solutions to Hamming distance search are based
on the filter-and-refine framework to generate a set of candi-
dates that satisfy a necessary condition of the Hamming dis-
tance constraint. The majority of these methods [2], [24],
[33], [53] are based on the intuition that if two vectors are
similar, there will be a pair of similar parts from the two
vectors which are vertically partitioned into m parts. The
(basic) pigeonhole principle is utilized by these methods.

Lemma 1 (Basic Pigeonhole Principle). Binary vectors x
and y are vertically partitioned into m parts, each having n

m

dimensions. Let xi (yi), 1 � i � m, denote a part in x (y). If

Fig. 1. Skewness (j#1s�#0sj
#vectors) by dimension of datasets in [22].

1. To measure the skewness of the ith dimension, we calculate the
numbers of vectors whose values on the ith dimension are 0 and 1,
respectively, and then take the ratio of their difference and the total
number of vectors.

490 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

Hðx; yÞ � t, there exists at least one part i such that
Hðxi; yiÞ � b tmc.

Any data object x satisfying the condition that 9i,
Hðxi;qiÞ � b tmc is called a candidate. Since these candidates
will be verified by computing the exact Hamming distance
to the query, the query processing performance depends
heavily on the number of candidates.

2.3 Overview of Existing Approaches

We briefly introduce a state-of-the-art method, Multi-index
Hamming (MIH) [33]; other methods based on the basic
pigeonhole principle work in a similar way. MIH partitions
the n dimensions into m equi-width parts. In each part,
based on basic pigeonhole principle, it performs Hamming
distance search on n0 ¼ bnmc dimensions with a threshold
t0 ¼ b tmc. MIH builds an inverted index offline, mapping
each part of a data object to the object ID. For each part of
the query, it enumerates n0-dimensional vectors whose
Hamming distances to the part are within t0. These vectors
are called signatures. Then it looks up signatures in the index
to find candidates and verifies them.

2.4 Weaknesses of Basic Pigeonhole Principle
Next we analyze the major drawbacks of the filtering condi-
tion based on the basic pigeonhole principle. Note that the
filtering condition is uniquely characterized by an array of
thresholds allocated to each corresponding part. We call the
array threshold array, and denote the one based on the basic
pigeonhole principle by Tbasic ¼ ½b tmc; . . . ; b tmc�. We also
define the dominance relationship between threshold arrays.
Let ni denote the number of dimensions in the ith part. T1

dominates T2, or T1 � T2, iff 8i 2 ½1::m�, T1½i� � T2½i� and
½T1½i�; T2½i�� \ ½�1; ni � 1� 6¼ ;,2 and 9i 2 ½1::m�; T1½i� < T2½i�.

� Tbasic is not always tight. By the tightness of a thresh-
old array T , we mean that (1) (correctness) every vec-
tor whose Hamming distance to the query is within
the threshold will be found by the filtering condition
based on T , and (2) (minimality) there does not exists
another array T 0 that dominates T yet still guaran-
tees correctness. As the candidate size is monotonic
with respect to the threshold, an algorithm based on
a threshold array which dominates Tbasic will gener-
ate fewer or at most equal number of candidates
compared with an algorithm based on Tbasic.

Example 1. Consider t ¼ 9 and m ¼ 3. The threshold array
Tbasic is ½3; 3; 3�. We can find a dominating threshold array
T ¼ ½2; 2; 3� which is tight and guarantees both correct-
ness and minimality. Note that there may be multiple
tight threshold arrays for the same t. E.g., another tight
threshold array for the example can be ½2; 3; 2� or ½4; 3; 0�.3

� The filtering condition does not adapt to the data distribu-
tion in the partition. Skewness and correlations among
dimensions often exist in real data. Equal allocation of
thresholds, as done in Tbasic, may result in poor selec-
tivity for some parts, hence excessive number of candi-
dates. Several recent studies recognized this issue and

proposed several methods to either obtain relatively
less skew parts by partition rearrangement [53] or allo-
cating varying thresholds heuristically to different
parts [15]. In contrast, we propose that a skewed parti-
tion can be beneficial and we can reduce the candidate
size by judiciously allocating different thresholds to
different parts in a query-specific way to exploit such
skewness, as shown in Example 2.

Example 2. Suppose n ¼ 8, m ¼ 2, and t ¼ 2. Consider the
four data vectors and the query vector, and two different
partitions in Table 1. Consider the first query. MIH uses
Tbasic ¼ ½1; 1�. This results in all the four data vectors rec-
ognized as candidates, but only one (x1) is the result. If
we use the first six dimensions as one part and the rest
two dimensions as the other part, and use T ¼ ½2; 0�, the
candidate size will be reduced to 2 (x1 and x2).

3 GENERAL PIGEONHOLE PRINCIPLE

In this section, we propose a general form of the pigeonhole
principle which allows variable thresholds to guarantee the
tightness of threshold arrays.

We begin with the allocation of thresholds. Given a
threshold array, we use the notation kTk1 to denote the sum
of thresholds in the m parts, i.e., kTk1 ¼

Pm
i¼1 T ½i�. The flexi-

ble pigeonhole principle is stated below.

Lemma 2 (Flexible Pigeonhole Principle). A partition P
divides an n-dimensional binary vector into m disjoint parts. x
and y are partitioned by P. Consider a threshold array T ¼ ½t1;
. . . ; tm� such that ti are integers and kTk1 ¼ t. If Hðx; yÞ � t,
there exists at least one part i such thatHðxi; yiÞ � ti.

Proof. Assume that @i such that Hðxi; yiÞ � ti. Since the m
parts are disjoint,Hðx; yÞ ¼

Pm
i¼1 Hðxi; yiÞ >

Pm
i¼1 ti. There-

fore,Hðx; yÞ > t, which contradicts thatHðx; yÞ � t. tu
The principle stated by Lemma 2 is more flexible than the

basic pigeonhole principle in the sense that we can choose
arbitrary thresholds for different parts. Intuitively, we may
tolerate more errors for selective parts and fewer errors for
unselective parts.

To achieve tightness, we first extend the threshold alloca-
tion from integers to real numbers.

Lemma 3. x and y are partitioned by P into m disjoint parts.
Consider an array T ¼ ½t1; . . . ; tm� in which the thresholds are
real numbers. kTk1 ¼ t. If Hðx; yÞ � t, there exists at least
one part i such thatHðxi; yiÞ � btic.

Proof. The proof of Lemma 2 also applies to real numbers.
Therefore, if

Pm
i¼1 ti ¼ t and Hðx; yÞ � t, then 9i,

TABLE 1
Benefits of Adaptive Partitioning and Thresholding

Equi-width Partition Variable Partition

Part 1 Part 2 Part 1 Part 2

x1 ¼ 00000000 0000 0000 000000 00
x2 ¼ 00000111 0000 0111 000001 11
x3 ¼ 00001111 0000 1111 000011 11
x4 ¼ 10011111 1001 1111 100111 11

q1 ¼ 10000000 1000 0000 100000 00
t1 ¼ 1 t2 ¼ 1 t1 ¼ 2 t2 ¼ 0

2. This is to make sure at least one threshold is non-trivial.
3. Please refer to Section 3 for more explanation of tightness.

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 491

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

Hðxi; yiÞ � ti. Because ti are real numbers and Hðxi; yiÞ
are integers, 9i,Hðxi; yiÞ � btic. tu

Definition 1 (Integer Reduction). Given a threshold array
T ¼ ½t1; t2; . . . ; tm�, we can reduce it to T 0 ¼ ½bt1c; bt2c
; . . . ; btmc�.

It is obvious that the candidate set does not change after an
integer reduction, as the Hamming distances must be integers.

When we combine Lemma 3 and the integer reduction
technique, they can produce a threshold array which domi-
nates Tbasic, as shown in Example 3.

Example 3. Recall in Example 1, Tbasic is ½3; 3; 3� using the
basic pigeonhole principle. To obtain a dominating array,
we can start with a possible threshold array T ¼ ½2:9; 2:9;
3:2�. Then by the integer reduction, T is reduced to
T 0 ¼ ½2; 2; 3�. To see this is correct, if @i, Hðxi; yiÞ � T 0½i�,
there will be 3þ 3þ 4 ¼ 10 errors between x and y. Com-
pared to ½3; 3; 3�, T 0 is a dominating threshold array, and the
constraints on the first two parts are stricter.

The above example also shows that the sum of the m
thresholds can be reduced. The following lemma and theo-
rem show how they work in the general case and the tight-
ness guarantee of the resulting threshold arrays.

Lemma 4 (General Pigeonhole Principle). x and y are par-
titioned by P into m disjoint parts. Consider a threshold array
T ¼ ½t1; . . . ; tm� composed of integers. kTk1 ¼ t �mþ 1. If
Hðx; yÞ � t, there exists at least one part i such that
Hðxi; yiÞ � ti.

Proof. Given an array T ¼ ½t1; . . . ; tm� such that kTk1 ¼ t�
mþ 1, we consider another array T 0 ¼ ½t0i; . . . ; t0m� ¼ ½t1þ
1; . . . ; tm�1 þ 1; tm�; i.e., it equals to T on the last part and
is greater than T by 1 in the other m� 1 parts. Because
kT 0k1 ¼ kTk1 þ ðm� 1Þ ¼ t, by Lemma 2, if Hðx; yÞ � t,
then 9i,Hðxi; yiÞ � t0i.

For the first ðm� 1Þ dimensions in T 0, we decrease each
of their thresholds by a small positive real number �,
and for the last dimension, we increase the threshold
by ðm� 1Þ�; i.e., the sum of thresholds does not change.
Hence we have an array T 00 ¼ ½t00i ; . . . ; t00m� ¼ ½t1 þ 1�
�; . . . ; tm�1 þ 1 � �; tm þ ðm� 1Þ��. Because kT 00k1 ¼
kT 0k1 ¼ t, by Lemma 3, if Hðx; yÞ � t, then 9i, Hðxi; yiÞ �
bt00i c. Because

bt00i c ¼
bti þ 1� �c ¼ ti; if i < m;
bti þ ðm� 1Þ�c ¼ ti; if i ¼ m;

�

ifHðx; yÞ � t, then 9i,Hðxi; yiÞ � ti. tu

One may notice that in the above proof, the parts we choose
to decrease thresholds are not limited to the first ðm� 1Þ ones.
Therefore, given a threshold array T such that kTk1 ¼ t, we
may choose any ðm� 1Þ parts and decrease their thresholds
by 1. For the resulting array T 0, kT 0k1 ¼ t �mþ 1. We may
use it as a stricter condition to generate candidates and the cor-
rectness of the algorithm is still guaranteed. We call the process
of converting T to T 0 �-transformation.

Theorem 1. The filtering condition based on the general pigeon-
hole principle is tight.

Proof. The correctness is stated in Lemma 4. We prove the
minimality. Given a threshold array T based on the general
pigeonhole principle, i.e., kTk1 ¼ t �mþ 1, we consider a
threshold array T 0 which is composed of integers and domi-
nates T , i.e., 8i 2 ½1::m�, T 0½i� � T ½i� and ½T 0½i�; T ½i�� \
½�1; ni � 1� 6¼ ;, and 9j 2 ½1::m�, T 0½j� < T ½j�. Because
8i 2 ½1::m�, Hðxi;qiÞ 2 ½0::ni� and ½T 0½i�; T ½i�� \ ½�1; ni � 1�
6¼ ;, we may construct a vector x such that 8i 2 ½1::m�,
Hðxi;qiÞ ¼ maxð0; T 0½i� þ 1Þ. 8i 2 ½1::m�, because T 0½i� �
T ½i� and ½T 0½i�; T ½i�� \ ½�1; ni � 1� 6¼ ;, Hðxi;qiÞ � T ½i� þ1.
Because 9j 2 ½1::m�, T 0½j� < T ½j�, 9j 2 ½1::m�,
Hðxj;qjÞ � T ½j�. Because Hðxi;qiÞ > T 0½i� on all the m
parts, x is not a candidate by T 0. However, Hðx;qÞ ¼Pm

i¼1 Hðxi;qiÞ � kTk1 þm� 1 ¼ t, meaning that x is
result of the query. Therefore, the filtering condition based
on T 0 is incorrect, and thus the minimality of T is proved. tu
One surprising but beneficial consequence of the �-trans-

formation is that the resulting threshold of a part may
become negative. For example, ½1; 0; 0� becomes ½0; 0;�1�4 if
the first and third parts are chosen to decrease thresholds.
Since Hðxi; yiÞ is a non-negative integer, Hðxi; yiÞ � ti is
always false if ti is negative. This fact indicates that the parts
with negative thresholds can be safely ignored for candidate
generation. As will be shown in the next section, this allows
us to ignore the parts where the query vector and most of
the data vectors are identical. This endows our method the
unique ability to handle highly skewed data or partitions.

Example 4. Consider the four data vectors and two queries
in Table 2.

ti ¼ �1 ti ¼ 0 ti ¼ 1 ti ¼ 2 ti ¼ 3 ti ¼ 4

CN1 0 5 10 15 50 100
CN2 0 10 80 90 95 100
CN3 0 5 15 20 70 100
CN4 0 10 70 80 95 100

t = i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

-3 0 0 0 5
-2 0 0 5 10
-1 0 5 10 20
0 5 15 20 30
1 10 20 20 30
2 15 25 35 45
3 50 60 40 45
4 100 110 45 55

For q1, we show the threshold arrays based on the
flexible pigeonhole principle and the general pigeonhole
principle. The candidate sizes are 2 and 1, respectively.
For q2, we show two different threshold arrays based on
the general pigeonhole principle. The candidate sizes are
4 and 2, respectively.

4 THRESHOLD ALLOCATION

To utilize the general pigeonhole principle to process
queries, there are two key issues: (1) how to divide the n

4. Note that in our method, we only consider the case of �1 for the
negative threshold of a part since the other negative values are not
necessary.

492 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

dimensions into m parts, and (2) how to compute the
threshold array T such that kTk1 ¼ t �mþ 1.

We will tackle the first issue in Section 5 with an offline
solution. Before that, we focus on the second issue in this
section and propose an online algorithm.

4.1 Cost Model
To optimize the threshold allocation, we first analyze the
query processing cost. Like MIH, we also build an inverted
index offline to map each part of a data object to the object
ID. Then for each part of the query, we enumerate signa-
tures to generate candidates.

The query processing cost consists of three parts

Cquery procðq; T Þ ¼ Csig genðq; T Þ þ Ccand genðq; T Þ
þ Cverifyðq; T Þ;

where Csig gen, Ccand gen, and Cverify denote the costs of signa-
ture generation, candidate generation, and verification,
respectively.

For each part i, a signature is a vector whose Hamming
distance is within ti to the ith part of query q. Since we
enumerate all such vectors, the signature generation cost is

Csig genðq; T Þ ¼
Xm
i¼1

ni

ti

� �
� cenum;

where ni denotes the number of dimensions in the ith part,
and cenum is the cost of enumerating the value of a dimen-
sion in a given vector. If ti < 0, the cost is 0 for the ith part.

Let Ssig denote the set of signatures generated. The candi-
date generation cost can bemodeled by inverted index lookup

Ccand genðq; T Þ ¼
X
s2Ssig

jIsj � caccess;

where jIsj denotes the length of the postings list of signa-
ture s, and caccess is the cost of accessing an entry in a
postings list.

The verification cost is

Cverifyðq; T Þ ¼ jScandj � cverify;

where Scand is the set of candidates, and cverify is the cost to
check if two n-dimensional vectors’ Hamming distance is
within t.

In practice, the signature generation cost is usually
much less than the candidate generation cost and the ver-
ification cost (see Section 9.2 for experiments). So we can
ignore the signature generation cost when optimizing the
threshold allocation. In addition, it is difficult to accu-
rately estimate the size of Scand using the lengths of post-
ings lists, because it can be reduced from the minimal
k-union problem [44], which is proved to be NP-hard.
Nonetheless, jScandj is upper-bounded by the sum of can-
didates generated in all the parts, i.e.,

P
s2Ssig jIsj. Our

experiments (Section 9.2) show that the ratio of jScandj and
this upper bound depends on data distribution and t.
Given a dataset, the ratio with respect to varying t can be
computed and recorded by generating a number of
queries and processing them. Let a denote this ratio. We
may rewrite the number of candidates in the form of
a �

Pm
i¼1 CNðqi; tiÞ, where CNðqi; tiÞ is the number of can-

didates generated by the ith part of the query q with a
threshold of ti (when ti ¼ �1, CNðqi; tiÞ ¼ 0). The query
processing cost can be estimated as

dCquery procðq; T Þ ¼
Xm
i¼1

CNðqi; tiÞ � ðcaccess þ a � cverifyÞ: (1)

With the above cost model, we can formulate the thresh-
old allocation as an optimization problem.

Problem 2 (Threshold Allocation). Given a collection of
data objects R, a query q and a threshold t, find the threshold
array T that minimizes the estimated query processing cost
under the general pigeonhole principle; i.e.,

argmin
T

dCquery procðq; T Þ; s:t:kTk1 ¼ t �mþ 1:

4.2 Threshold Allocation Algorithm
Since caccess, cverify, and a are independent of CNðqi; tiÞ, we
can omit the coefficient ðcaccess þ a � cverifyÞ in Equation (1)
and find the minimum query processing cost with only
CNðqi; tiÞ. The computation of CNðqi; tiÞ values will be
introduced in Section 4.3. Here we treat CNðqi; tiÞ as a black
box withOð1Þ time complexity and propose an online thresh-
old allocation algorithm based on dynamic programming.

Let OPT ½i; t� record the minimum query processing cost
(omitting the coefficient ðcaccess þ a � cverifyÞ) for the parts
1; . . . ; i with a sum of thresholds t. We have the following
recursive formula:

OPT ½i; t� ¼ mintþi�1e¼�1 OPT ½i� 1; t� e� þ CNðqi; eÞ; if i > 1;
CNðqi; tÞ; if i ¼ 1:

�

With the recursive formula, we design a dynamic
programming algorithm for threshold allocation, whose
pseudo-code is shown in Algorithm 1. It first initializes the
costs for the first part (Lines 1–2), i.e., OPT ½1;�1�;
. . . ; OPT ½1; t�. Then it iterates through the other parts and
compute the minimum costs (Lines 3–10). Note that the neg-
ative threshold �1 is also considered for each part. Finally,
we trace the path that reaches OPT ½m; t �mþ 1� to obtain
the threshold array (Lines 11–14). The time complexity of
the algorithm is Oðm � ðt þ 1Þ2Þ.

TABLE 2
Threshold Array and Candidate Size

Part 1 Part 2

x1 ¼ 00000000 000000 00
x2 ¼ 00000111 000001 11
x3 ¼ 00001111 000011 11
x4 ¼ 10011111 100111 11

q1 ¼ 10000000 100000 00

q2 ¼ 10000011 100000 11

q1 T ¼ ½2; 0� Cand ¼ fx1; x2g
T ¼ ½1; 0� Cand ¼ fx1g

q2 T ¼ ½1; 0� Cand ¼ fx1; x2; x3; x4g

T ¼ ½2;�1� Cand ¼ fx1; x2g

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 493

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. DPAllocateðq;m; tÞ
1 for e ¼ �1 to t do
2 OPT ½1; e� CNðq1; eÞ, PATH½1; e� e;
3 for i ¼ 2 tom do
4 for t ¼ �i to t � iþ 1 do
5 cmin ¼ þ1;
6 for e ¼ �1 to tþ i� 1 do
7 if OPT ½i� 1; t� e� þ CNðqi; eÞ < cmin then
8 cmin OPT ½i� 1; t� e� þ CNðqi; eÞ;
9 emin e;
10 OPT ½i; t� ¼ cmin, PATH½i; t� ¼ emin;
11 e t �mþ 1;
12 for i ¼ m to 1 do
13 T ½i� PATH½i; e�;
14 e e� PATH½i; e�;
15 return T ;

Example 5. Consider a dataset of 100 binary vectors and we
partition them into 4 parts. Given a query q, for each part
i, suppose the numbers of candidates (denoted by CNi)
under different thresholds are given in the table below.

We use Algorithm 1 to compute the threshold array.
The OPT ½i; t� values are given in the table below.

The minimum query processing cost OPT ½4; 4� ¼ 55.
We trace the path (underlined) that reaches this value
and obtain the threshold array ½2; 0; 2; 0�.

4.3 Computing Candidate Numbers
In order to run the threshold allocation algorithm, we need
to obtain the candidate numbers CNðqi; tiÞ beforehand. An
exact solution to computing CNðqi; tiÞ is to enumerate all
possible vectors for the ith part and then count how many
vectors in R has a Hamming distance within ti to the enu-
merated vector in this part. These numbers are stored in
a table. When processing the query, with the given qi, the
table is looked up for the corresponding entry CNðqi; tiÞ.
The time complexity of this algorithm is Oðm � 2n � 2tÞ,
and the space complexity is Oðm � 2nÞ. This method is only
feasible when n and t are small. To cope with large n and t,
we devise two approximation algorithms to estimate the
number of candidates.

Sub-Partitioning. The basic idea of the first approximation
algorithm is splitting qi into smaller equi-width sub-parts
and estimating CNðqi; tiÞ with the candidate numbers of
the sub-parts. We divide qi into mi sub-parts. Each sub-part
has a fixed number of dimensions so that its candidate num-
ber can be computed using the exact algorithm in reason-
able amount of time and stored in main memory. For the
thresholds of the sub-parts, we may use the general pigeon-
hole principle and divide ti into mi values such that they
sum up to ti �mi þ 1. Let qij denote a sub-part of qi and tij

denote its threshold. Let Gðmi; tiÞ be the set of threshold
arrays of which the total thresholds sum up to no more than
ti �mi þ 1; i.e., f½ti1; . . . ; timi

�jtij 2 ½�1::ti� ^
Pmi

j¼1 tij � ti
�mi þ 1g.

We offline compute all the CNðqij; tijÞ values for all
tij 2 ½�1::ti� using the aforementioned exact algorithm; i.e.,
enumerate all possible query vectors and then count how
many data vectors in R has a Hamming distance within tij
to the enumerated vector in this sub-part. We assume that
the candidates in the mi sub-parts are independent. Then

CNðqi; tiÞ can be approximately estimated online with the
following equation.

dCNðqi; tiÞ ¼
X

g2Gðmi;tiÞ

Ymi

j¼1
ðCNðqij; g½j�Þ � CNðqij; g½j� � 1ÞÞ:

Machine Learning. We may also use machine learning
technique to predict the candidate number for a given
hqi; tii. For each ti, we regard each dimension of qi as a fea-
ture and randomly generate feature vectors xk ¼ ðb1;
. . . ; bniÞ. The candidate number CNðxk; tiÞ can be obtained
by processing xk as a query with a threshold ti. Then we
apply the regression model on the training data T i ¼
fhxk; CNðxk; tiÞig.

Let htiðxi; uiÞ denote the machine learning model, where
ui denotes its parameters. Traditional regression models
utilize mean squared error as loss function. To reduce the
impact of large CNðxk; tiÞ, we use relative error as our loss

function: JðT i; uiÞ ¼
PjT ij

k¼1f
CNðxk;tiÞ�hti ðxk;uiÞ

CNðxk;tiÞ
g2. According to

[36], we utilize the approximation lnðtÞ 	 t� 1 to estimate
JðT i; uiÞ

JðT i; uiÞ ¼
XjT ij

k¼1
1� htiðxk; uiÞ

CNðxk; tiÞ

� �2

	
XjT ij

i¼1
ln
CNðxk; tiÞ
htiðxk; uiÞ

� �2

¼
XjT ij

i¼1
flnCNðxk; tiÞ � lnhtiðxk; uiÞg

2:

From the above equation, we can simply convert training
data hxk; CNðxk; tiÞi into hxk; lnCNðxk; tiÞi and then take
mean squared error to train an SVMmodel with RBF kernel.

5 DIMENSION PARTITIONING

To deal with data skewness and dimension correlations,
the existing methods for Hamming distance search resort
to random shuffle [2] or dimension rearrangement [26],
[45], [53]. All of them are aiming towards the direction that
the dimensions in each part or the signatures in the index
are uniformly distributed, so as to reduce the candidates
caused by frequent signatures. In this section, we present
our method for dimension partitioning. We devise a cost
model of dimension partitioning and convert the partition-
ing into an optimization problem to optimize query proc-
essing performance. Then we propose an algorithm to
solve this problem.

5.1 Cost Model
Let Pi denote a set of dimensions in the range ½1::n�. Our
goal is to find a partition P ¼ fP1; . . . ; Pmg such that
Pi \ Pj ¼ ; if i 6¼ j, and [mi¼1Pi ¼ f1; . . . ; ng. Given a query
workload Q ¼ f< q1; t1 > ; . . . ; < qjQj; tjQj > g, the query
processing cost of Q is the sum of the costs of its constitu-
ent queries

CworkloadðQ;PÞ ¼
XjQj
i¼1

dCquery procðqi; ti;PÞ; (2)

where dCquery procðqi; ti;PÞ is the processing cost of query
qi with a threshold ti, which can be computed using the

494 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

dynamic programming algorithm proposed in Section 4.
Then we can formulate the dimension partitioning as an
optimization problem.

Problem 3 (Dimension Partition). Given a collection of data
objects R and a query workload Q, find the partition P that
minimizes the query processing cost of Q under the general
pigeonhole principle; i.e., argminP CworkloadðQ;PÞ.

Lemma 5. The dimension partition problem is NP-hard.

Proof. We can reduce the dimension partition problem
from the number partition problem [4], which is to parti-
tion a multiset of positive integers, S, into two subsets S1

and S2 such that the difference between the sums in the
two sets is minimized. Consider a special case m ¼ 2 and
a Q of only one query. Let S be a multiset of n positive
integers, each representing a dimension in the dimension
partition problem. Let sumðSÞ denote the sum of numbers
in S. For i 2 f1; 2g, Let CNðqi; tiÞ ¼ sumðSiÞ2, 8ti 2
½�1::t�; i.e., the candidate number in part i equals to
the square of the sum of numbers in this part. By
Equations (1) and (2), CworkloadðQ;PÞ ¼ ðsumðS1Þ2þ
sumðS2Þ2Þ �ðcaccess þ a � cverifyÞ. Cworkload is minimized
when the difference between sumðS1Þ and sumðS2Þ is
minimized. The special case of the dimension partition
problem is thus reduced from the number partition prob-
lem. Because the latter is NP-complete, the dimension
partition problem is NP-hard. tu

5.2 Partitioning Algorithm
Seeing the difficulty of the dimension partition problem, we
propose a heuristic algorithm to select a good partition: first
generate an initial partition and then refine it.

Algorithm 2. HeuristicPartitionðR;Q;mÞ
1 P InitialPartitionðR;Q;mÞ
2 cmin CworkloadðQ;PÞ
3 f true;
4 while f ¼ true do
5 f false;
6 foreach Pi 2 P do
7 foreach d 2 Pi do
8 P 0i Pi n fdg, P0 ðP n PiÞ [P 0i ;
9 foreach Pj 2 P; j 6¼ i do
10 P 0j Pj [fdg, P0 ðP0 n PjÞ [P 0j ;
11 if CworkloadðQ;P0Þ < cmin then
12 f true;
13 cmin CworkloadðQ;P0Þ;
14 Pmin P0;
15 if f ¼ true then
16 P Pmin;
17 return P;

Algorithm 2 captures the pseudo-code of the heuristic
partitioning algorithm. It first generates an initial partition
P of m parts (Line 1). The details of the initialization step
will be introduced in Section 5.3. Then the algorithm itera-
tively improves the current partition by selecting the best
option of moving a dimension from one part to another. In
each iteration, we pick a dimension from a part Pi (Line 8),
try to move it to another part Pj, j 6¼ i (Line 10), and com-
pute the resulting query processing cost of the workload.

We try all possible combination of Pi and Pj, and the option
that yields the minimum cost is taken as the move of this
iteration (Line 16). The above steps repeat until the cost can-
not be further improved by moving a dimension. The time
complexity of the algorithm is OðlmncÞ. l is the number of
iterations. c is the time complexity of computing the cost of
the workload, OðjQj �m � ðt þ 1Þ2Þ. We also note that due to
the replacement of dimensions, a number of parts
may become empty in our algorithm. Hence it is not manda-
tory to output exactlym parts for an input partition sizem.

For the input query workload Q, in case a historical
query workload is unavailable, a sample of data objects can
be used as a surrogate. Our experiments show that even if
the distribution of real queries are different from the query
workload that we use to compute the partition, our query
processing algorithm still achieves good performance
(Section 9.7). We also note that we may assign varying
thresholds to the queries in the workload Q. The benefit is
that we can offline compute the partition using the work-
load which covers a wide range of thresholds, and then
build an index without being aware of the thresholds of real
queries beforehand.

5.3 Initial Partitioning
Since the dimension partition algorithm stops at a local opti-
mum, we may achieve a better result with a carefully
selected initial partition. The correlation of dimensions play
an important role here. Unlike the existing methods which
try to make dimensions in each part uniformly distributed,
our method aims at the opposite direction. We observe that
the query processing performance is usually improved if
highly correlated dimensions are put into the same parts.
This is because our threshold allocation algorithm works
online and optimizes each query individually. When highly
correlated dimensions are put together, more errors are
likely to be identified in a part, and thus our threshold alloca-
tion algorithm can assign a larger threshold to this part and
smaller thresholds to the other parts; i.e., choosing proper
thresholds for different parts. If the dimensions are uni-
formly distributed, all the parts will have the same distribu-
tion and there is little chance to optimize for specific parts.

We may measure the correlation of dimensions with
entropy. Given a part Pi, we project all the data vectors inR
on Pi, and useRPi to denote the set of resulting vectors. The
correlation of the dimensions of Pi is measured by

HðRPiÞ ¼ �
X
x2RPi

P ðxÞ � logP ðxÞ:

According to the definition of entropy, a smaller value of
entropy indicates a higher correlation of the dimensions of
Pi. The entropy of the partition P is the sum of the entropies
of its constituent parts

HðPÞ ¼
Xm
i¼1

HðRPiÞ:

Our goal is to find an initial partition P to minimize
HðPÞ. To achieve this, we generate an equi-width partition
in a greedy manner: Starting with an empty part, we select
the dimension which yields the smallest entropy if it is put
into this part. This is repeated until a fixed part size bnmc is
reached, and thereby the first part is obtained. Then we

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 495

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

repeat the above procedure on the unselected dimensions to
generate the other ðm� 1Þ parts.

6 THE GPH ALGORITHM

Based on the general pigeonhole principle and the techni-
ques proposed in Sections 4 and 5, we devise theGPH (short
for the General Pigeonhole principle-based algorithm for
Hamming distance search) algorithm.

The GPH algorithm consists of two phases: the index-
ing phase (Algorithm 3) and the query processing phase
(Algorithm 4). In the indexing phase, it takes as input a
dataset R, a query workload Q,and a tunable parameter
m for the size of partition. The partition P is generated
using the heuristic partitioning algorithm proposed in
Section 5 (Line 1). Then for each n-dimensional vector x
in R, we partition it by P into m parts. For the projection
of x on each part, the ID of x, along with the part ID, is
inserted into the postings list of the projection (Line 5).
In the query processing phase, the query q and the
threshold t are input to the algorithm. It first partitions
q by P into m parts. Then the threshold array T is com-
puted using the dynamic programming algorithm pro-
posed in Section 4 (Line 2). For the projection of q on
each part, we enumerate the signatures whose Hamming
distances to the projection do not exceed the allocated
threshold (Line 4). Then for each signature, we probe the
inverted index to find the data objects that have this
signature in the same part (Line 5), and insert their
object IDs into the candidate set (Line 6). The candidates
are verified using Hamming distance (Line 8) and the
results are returned (Line 10).

Algorithm 3. GPH-IndexðR;Q;mÞ
1 P HeuristicPartitionðR;Q;mÞ;
2 I ; /* I is a hashmap of key-value pair

hhsignature; part IDi; postings listi */;
3 for each x 2 R do
4 for i 1 tom do
5 Ixi Ixi [fhx; iig;
6 return I;

Algorithm 4. GPH-ProcessQueryðR; I;P;q; tÞ
1 A ;; R ; /* A is a set of candidates*/;
2 T DPAllocateðq; m; tÞ;
3 for i 1 tom do
4 foreach s s.t.Hðs; xiÞ � T ½i� do
5 foreach hx; ji 2 Is and i ¼ j do
6 A A [fxg;
7 foreach x 2 A do
8 ifHðx;qÞ � t then
9 R R [x;
10 return R;

7 HAMMING DISTANCE JOIN

Hamming distance searches can be invoked in batch mode
and become a Hamming distance join.

Problem 4 (Hamming Distance Join). Given two collection
of data objects R and S, a Hamming distance join is to find all
pairs of objects in the two collections whose Hamming distances

are no greater than a threshold t, i.e., fhx; yi j x 2 R; y 2
S; Hðx; yÞ � tg.

Hamming distance join is useful for the applications in
which we are to identify similar objects from multiple data-
sets, e.g., detecting suspects from a set of camera snapshots
using a repository of the photos of recorded criminals. For
such applications, a common scenario is that the dimension
partition and the index are sometimes not given before-
hand, i.e., the whole task is processed online. We assume
such setting for Hamming distance join. In the rest of this
section, we first adapt the GPH algorithm to self joins (i.e.,
R ¼ S and x:ID < y:ID) and then extend the method to
process R-S joins.

7.1 Self Join
The self join algorithm is composed of two passes overR. The
first pass is to compute the dimension partitioning. The second
pass is to perform the join with an index constructed online.

For dimension partitioning, in Section 5 we propose to
find an initial partition using entropy and then refine it
with a heuristic algorithm. Since the heuristic refinement
runs in multiple iterations to compute the cost of the work-
load and adjust the partition, it is time-consuming and not
suitable for an online join task. Thus, we take the initial par-
tition as the result of dimension partitioning for Hamming
distance join.

Then we iterate through R to perform the join
(pseudo-code given in Algorithm 5). The inverted index,
the statistics for candidate number computation, and the
result set are initialized as empty at first (Line 1). Then each
object x is partitioned and processed in two steps:

� The first step is a Hamming distance search for
the already-seen objects that are similar to x. We
first partition x and allocate thresholds (Line 3).
In Section 4.3, two candidate number computation
methods are proposed for threshold allocation.
We choose the sub-partitioning method to com-
pute the candidate number for Hamming distance
join, because the machine learning method
requires an offline training and does not work for
an index built online since the number of indexed
objects is growing. Then we follow the same
method as Hamming distance search to find simi-
lar objects to x (Lines 4–11).

� In the second step, we first insert x to the inverted
index (Line 13). Then we update the candidate
number statistics (the CN values) by sub-
partitioning (Lines 14–17): for each tij 2 ½�1::t�,
we enumerate every possible query sub-part qij

which is within Hamming distance tij to xi, and
then increase the counter CNðqij; tijÞ by one.

7.2 R-S Join
For R-S join, we assume that an index is created onR online
and the objects in S are taken as batch queries.

The dimension partitioning is the same as the self join
case. We also choose the sub-partitioning method to
estimate the candidate number, and compute the candi-
date number statistics of R when building the index of
R. Then we scan the objects in S to find join results
(pseudo-code given in Algorithm 6). An optimization is
based on the observation that two objects in S may share

496 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

the same projection over a part. This may result in the same
enumerated signatures and the same candidates generated
from this part. To exploit this observation, we process S in
two passes. In the first pass, S is scanned horizontally and
the objects are allocated with thresholds (Lines 2–3). In the
second pass, S is scanned vertically. For each part, we group
the objects by the projection over this part (Line 5). For each
group, since the set of signatures enumerated with a smaller
threshold are always contained by that with a larger thresh-
old, we only pick the largest allocated threshold of this group
(Line 8) and enumerate signatures using this threshold
(Line 9). Then the index is accessed to retrieve candidates
(Lines 10–12). Finally, the candidates of this group are veri-
fied usingHamming distance (Lines 13–16).

Algorithm 5. GPH-SelfJoinðR;P; tÞ
1 I ;, CNð�; �Þ 0, R ;;
2 foreach x 2 R do
3 T DPAllocateðx; m; tÞ;
4 A ;;
5 for i ¼ 1 tom do
6 foreach s s.t.Hðs; xiÞ � T ½i� do
7 foreach hy; ji 2 Is and i ¼ j do
8 A A [fyg;
9 foreach y 2 A do
10 ifHðx; yÞ � t then
11 R R [hx; yi;
12 for i ¼ 1 tom do
13 Ixi Ixi [fhx; iig;
14 for j ¼ 1 tomi do
15 for tij ¼ �1 to t do
16 foreach qij s.t.Hðqij; xijÞ � tij do
17 CNðqij; tijÞ CNðqij; tijÞ þ 1;
18 return R;

Algorithm 6. GPH-RSJoinðR;S;P; tÞ
1 I BuildIndexðR;P; tÞ;
2 foreach x 2 S do
3 Tx DPAllocateðx;m; tÞ;
4 foreach i ¼ 1 tom do
5 G group x 2 S by xi;
6 foreach gi 2 G do
7 Ax ;, 8x 2 S and xi ¼ gi;
8 tmax

i ¼ maxfTx½i� j x 2 S; xi ¼ gig;
9 foreach s s.t.Hðs; giÞ � tmax

i do
10 foreach hy; ji 2 Is and i ¼ j do
11 foreach x 2 S s.t. xi ¼ gi and

Tx½i� � tmax
i do

12 Ax Ax [fyg;
13 foreach x 2 S s.t. xi ¼ gi do
14 foreach y 2 Ax do
15 ifHðx; yÞ � t then
16 R R [hx; yi;
17 return R;

8 PIGEONHOLE PRINCIPLE FOR SET

SIMILARITY SEARCH

In this section, we discuss how the pigeonhole principle is
used to solve set similarity search, an equivalent problem of

Hamming distance search but defined on sets. For the simi-
larity search problems with other similarity measures, such
as string edit distance search and graph edit distance search,
we refer readers to a recent study [38] for the application of
the pigeonhole principle on these problems.

Problem 5 (Set Similarity Search). An object is a set of
tokens drawn from a finite universe U. Given a collection of
objectsR, a query set q, find all x 2 R such that simðx; qÞ � t.

simð�; �Þ is a set similarity function, e.g., the overlap simi-
larity Oðx; yÞ ¼ jx \ yj and the Jaccard similarity Jðx; yÞ
¼ jx\yjjx[yj .

We assume that the overlap similarity is used. To convert
it to an equivalent Hamming distance search,5 we first
regard a set as a U-dimensional binary vector: the ith
dimension indicates whether the set has the ith token. Then
Oðx; yÞ � t , Hðx; yÞ � jxj þ jyj � 2t. The main difference
of the two problems is that they target different applications
and the datasets are different in characteristics. In set simi-
larity search, the number of dimensions (the size of token
universe) is usually large (> 10000) and the vectors are
usually sparse (< 1000 1s).

Prevalent approaches to set similarity search are based
on prefix filter [1], [3], [5], [12], [29], [39], [46], [49], [50] and
partition filter [2], [15]. Other methods include enumera-
tion [14], [16], tree indexing [54], and postings list
merge [19], [40]. Some of them target the set similarity join
problem, the batch version of set similarity search. The
methods can be easily adapted to each other. We focus on
the two prevalent types of approaches.

8.1 Prefix Filter
The prefix filter [12] works directly on Oðx; yÞ:

Lemma 6. Suppose the tokens in each set is sorted by a total
order O. Let the prefix of a set x be the first ðjxj � t þ 1Þ tokens
in x. Consider two objects x and y. If Oðx; yÞ � t, the prefixes
of x and y must share at least one token.

Candidates are generated by the filter and then verified
by computing the exact overlap.

The prefix filter is essentially an extension of the general
pigeonhole principle with two threshold arrays, though the
fact has not been claimed by the aforementioned studies on
set similarity search. To see this, we sort the tokens in U by
the order O and convert sets to binary vectors: A set is
regarded as a jUj-dimensional binary vector, with each
dimension representing a token. x½i� ¼ 1, if x has the ith
token in U ; or 0, otherwise. The overlap similarity
Oðx; yÞ ¼ Oðx; yÞ ¼

PjUj
i¼1 1x½i�¼y½i�¼1, where 1x½i�¼y½i�¼1 is the

indicator function that returns 1, if x½i� ¼ y½i� ¼ 1; or 0, oth-
erwise. Then we have the general pigeonhole principle for
the Oðx; yÞ � t case (the proof is similar to Lemma 4 and
omitted in the interest of space):

Lemma 7. x and y are partitioned into m disjoint parts. Con-
sider a threshold array T ¼ ½t1; . . . ; tm� composed of integers.
kTk1 ¼ t þm� 1. If Oðx; yÞ � t, there exists at least one part
i such that Oðxi; yiÞ � ti.

5. Please refer to [50] for the conversion of other similarity measures.

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 497

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

Let m ¼ jUj. Each part is thus a dimension. We consider
the following threshold array Tx ¼ ½t1; . . . ; tm� for x:

� ti ¼ 1 for the first jxj � t þ 1 dimensions where
x½i� ¼ 1.

� ti ¼ 2 for the other t � 1 dimensions where x½i� ¼ 1.
� ti ¼ 1, if x½i� ¼ 0.
The first case states that the tokens in the prefix of xmust

have at least one match to form a candidate. The second
case states that the tokens in x but not in the prefix are
ignored since Oðx½i�; y½i�Þ � 1 < 2. The third case states that
the tokens not in x are ignored since 1x½i�¼y½i�¼1 ¼ 0 when
x½i� ¼ 0. The threshold array Ty of y is constructed in the
same way. The prefix filter is therefore converted to the
following proposition:

Proposition 1. If Oðx; yÞ � t, there exists at least one i 2 ½1::m�,
such thatOðxi; yiÞ � Tx½i� andOðxi; yiÞ � Ty½i�.

Next we prove the proposition is true.

Proof. Because kTxk1 ¼ ðjxj � t þ 1Þ þ 2ðt � 1Þ þ ðm� jxjÞ ¼
t þm� 1, Tx satisfies the condition in Lemma 7. Ty satis-
fies the condition for the same reason. Because the last
two cases are ignored in Tx when generating candidates,
there exists at least one i in the first jxj � t þ 1 dimensions
of x where x½i� ¼ 1, such that Oðxi; yiÞ � Tx½i�. So it is with
y. Without loss of generality, let ix and iy denote one
of the i values satisfying this condition for x and y, res-
pectively. Because Oðxi; yiÞ ¼ 1x½i�¼y½i�¼1, we have x½ix� ¼
y½ix� ¼ 1 and x½iy� ¼ y½iy� ¼ 1. If the proposition is false,
then Ty½ix� ¼ 2 and Tx½iy� ¼ 2. These two conditions can-
not be met at the same time. E.g., if Ty½ix� ¼ 2, then
iy < ix. This means Tx½iy� belongs to the first case.
Tx½iy� ¼ 1 and causes contradiction. tu

Variants of prefix filter have been proposed for faster
query processing, e.g., extended prefix [46], [50] and k-wise
signatures [48]. The latter leverages the pigeonhole princi-
ple. Details can be found in a recent study [38].

8.2 Partition Filter
There have been two partition filter methods for set similar-
ity search: PartEnum [2] and PartAlloc [15]. Both convert
the problem to an equivalent Hamming distance search and
work on Hðx; yÞ. For ease of exposition, we let t0 ¼ jxjþ
jyj � 2t.

PartEnum employs a two-level partitioning. It first parti-
tions each vector into m1 equi-width parts, each part with a
Hamming distance threshold of t1 ¼ dt

0þ1
m1
e � 1. Then it par-

titions each part into m2 > t1 equi-width sub-parts, so that
any two parts with Hamming distance t1 must agree on at
least ðm2 � t1Þ sub-parts. The first-level filtering uses the

pigeonhole principle with a threshold array T1 ¼ ½dt
0þ1
m1
e�

1; . . . ; dt0þ1m1
e � 1�. It is not always tight because kT1k1 can be

up to t0 > t0 �m1 þ 1, when t0modm1 ¼ 1. The second-
level filtering enumerates every possible ðm2 � t1Þ parts on
both data and query vectors to find candidates. It is a con-
straint on multiple parts and thus not covered by the
pigeonhole principle.

PartAlloc is a pigeonhole principle-based algorithm. It
partitions a vector into m ¼ t þ 1 equi-width parts. To gen-
erate candidates, each part has three options: exact match,

differ by one dimension, and be ignored. It is the same as
using a threshold array T ¼ ½t1; . . . ; tm� such that ti ¼ �1,
0, or 1. Its filtering condition is tight as it keeps
kTk1 ¼ t �mþ 1 ¼ 0. t1; . . . ; tm are decided by a dynamic
programming or a greedy algorithm which optimizes
index access.

9 EXPERIMENTS

9.1 Experiments Setup
The following algorithms are compared in the experiment.

� MIH is a method based on the basic pigeonhole prin-
ciple [33]. It divides vectors into m equi-width parts
and uses a threshold b tmc on all the parts to generate
candidates. Its filtering condition is not tight. Signa-
tures are enumerated on the query side. We utilize
the open source of MIH on GitHub [32] and chose the
fastestm setting on each dataset.

� MIHþ is an improved version of MIH [34]. It divides
vectors intom equi-width parts, and uses a threshold
b tmc on the first t �mb tmc þ 1 parts and b tmc � 1 on the
other parts. The sum of thresholds is t �mþ 1, and
thus the filtering condition is tight. We utilize the
open source of MIH on GitHub [32] and chose the
fastestm setting on each dataset.

� HmSearch is a method based on the basic pigeon-
hole principle [53]. Vectors are divided into btþ32 c
equi-width parts. It has a filtering condition in multi-
ple cases but not tight. The threshold of a part is
either 0 or 1. This is our previous work and we uti-
lize the existing source code.

� PartAlloc is a method to solve the set similarity join
problem [15]. It divides vectors into t þ 1 equi-width
parts and allocate thresholds to them with three
options: �1, 0, and 1. Its filtering condition is tight.
Signatures are enumerated on both data and query
vectors. The source code is received from the authors
of [15]. We convert the Hamming distance constraint
to an equivalent Jaccard similarity constraint [2]. The
greedy method [15] is chosen to allocate thresholds.

� LSH is an algorithm to retrieve approximate answers.
We convert the Hamming distance constraint to an
equivalent Jaccard similarity constraint and then use
the minhash LSH [8]. The dimension which yields the
minimum hash value is chosen as a minhash. k min-
hashes are concatenated into a single signature, and
this is repeated l times to obtain l signatures. We set k
to 3 and recall to 95 percent. l ¼ log 1�tkð1� rÞ

� �
,

where t is the Jaccard similarity threshold. The algo-
rithm is implemented by ourselves.

� GPH is the method proposed in this paper. We
implement it on top of the source code of MIH for
fair comparison.

Other methods for Hamming distance search, e.g., [21],
[24], [28], are not compared since prior work [53] showed
they are outperformed by HmSearch. We do not consider
the method in [41] because it focuses on small n (� 64) and
small t (� 4), and it is significantly slower than the other
algorithms in our experiments. E.g., on GIST, when t ¼ 8,
its average query response time is 128 times longer than
GPH. The approximate method proposed in [35] is only fast
for small thresholds. On SIFT, when t � 12, it becomes
slower thanMIH even if the recall is set to 0.9 [35]. Due to its

498 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

performance compared to MIH and the much larger thresh-
old settings in our experiments, we do not compare with
the method in [35].

We select three publicly available real datasets with dif-
ferent data distributions and application domains.

� SIFT is a set of 1 billion SIFT features from the BIG-
ANN dataset [20]. We follow the method used in [33]
to convert them into 128-dimensional binary vectors.

� GIST is a set of 80 million 256-dimensional GIST
descriptors for tiny images [43].

� PubChem is a database of chemical molecules [18].
We sample 1 million entries, each of which is a 881-
dimensional vector.

SIFT has the smallest skewness among the three. GIST is
a moderately skewed dataset. PubChem is a highly skewed
dataset. In addition to the three real datasets, we generate a
synthetic dataset with varying skewness.

We sample a subset of 100 vectors from each dataset as
the query workload for the partitioning of GPH. To generate
real queries, from each dataset we sample 1,000 vectors
(differ from the query workload for partitioning) and take
the rest as data objects. We vary t and measure the query
response time averaged over 1,000 queries. For GPH and
PartAlloc, threshold allocation time is also included. The t
settings are up to 32, 64, and 32 on the three real datasets,
respectively. The reason why we set smaller thresholds on
PubChem is more than 10 percent data objects are results
when t ¼ 32 due to the skewness.

The experiments are carried out on a server with a Quad-
Core Intel Xeon E3-1231 @3.4 GHz Processor and 96 GB
RAM, running Debian 6.0. All the algorithms are imple-
mented in C++ in a main memory fashion.

9.2 Justification of Assumptions
We first justify our assumptions for the cost model of
threshold allocation. m is chosen for the best performance.
Fig. 2a shows the query processing time of GPH on SIFT,
GIST, and PubChem (denoted by S, G, and P, respectively).
The time is decomposed into four parts: threshold alloca-
tion, signature enumeration, candidate generation, and veri-
fication. The figure is plotted in logscale so that threshold
allocation and signature enumeration can be seen. Com-
pared to candidate generation and verification, the time
spent on threshold allocation and signature enumeration is
negligible (< 3 percent), meaning that we can ignore them
when estimating the query processing cost. Fig. 2b shows
the sum of candidates generated in all the m parts
(
P

s2Ssig jIsj, denoted by dataset� sum) and the candidate

sizes (jScandj, denoted by dataset� cand) on the three data-
sets. It can be seen that jScandj is upper-bounded by

P
s2Ssig jIsj. The ratio of them varies from 0.69 to 0.98,

depending on dataset and t. The ratios on different datasets
and t settings are recorded as the value of a in Equation (1)
for cost estimation.

9.3 Evaluation of Threshold Allocation
We evaluate threshold allocation by comparing with a base-
line algorithm (denoted by RR). RR allocates thresholds in
a round robin manner, and the thresholds of the m parts
sum up to t �mþ 1. For a fair comparison, we randomly
shuffle the dimensions and then use the equi-width parti-
tioning (m is chosen for the best performance) for the com-
petitors in this set of experiments. Figs. 3a, 3c, and 3e show
the query processing costs (in terms of candidate numbers)
estimated by the dynamic programming algorithm
(denoted by DP) on the three datasets. We also plot the costs
of RR using our cost model. The corresponding query
response times are shown in Figs. 3b, 3d, and 3f. The trends
of the cost and the time are similar, indicating that the cost
model effectively estimates the query processing perfor-
mance. DP is significantly faster than RR in query process-
ing, and the gap is more remarkable on the datasets with
more skewness. On PubChem, the time of RR is close to
sequential scan. With judicious threshold allocation, the
time is reduced by nearly two orders of magnitude.

To evaluate the candidate number computation, we com-
pare the sub-partitioning algorithm (SP) and the machine
learning algorithm based on an SVM model (SVM). To
show why we choose SVM as the machine learning model,
we also compare with two other learning models: random
forest (RF) and a 3-layer deep neural network (DNN). The
number of sub-parts is 2. The size of the training data is
1,000 for the machine learning algorithms. Table 3 shows
the relative errors with respect to the exact method and the
times of candidate number computation (in microseconds).
Since the performances on the real datasets are similar, we
only show the results on the GIST dataset. The relative

Fig. 2. Justification of assumptions.

Fig. 3. Evaluation of threshold allocation.

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 499

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

error of SVM is very small, and it is more accurate and
faster than SP. To compare learning models, the relative
error of RF is much higher than the other methods.
Although DNN estimates candidate numbers slightly more
accurately than SVM in some settings, their relative errors
are both very small, and the running time of DNN is much
more than SVM. In addition, we tried logistic regression
and gradient boosting decision tree. Their relative errors are
higher than the above methods and not shown here. Seeing
these results, we choose the SVM model to estimate candi-
date numbers in the rest of the experiments.

9.4 Evaluation of Dimension Partitioning
To evaluate the effect of partitioning, we compare our
method (denoted by GR) with the following competitors:
(1) OR is to use the original unshuffled order of the data-
set. (2) RS is to perform a random shuffle on the original
order. (3) OS [53] and DD [45] are two dimension rear-
rangement methods to make dimensions in each part uni-
formly distributed.

We run GPH with the above partitioning methods and
show the query response times in Figs. 4a, 4c, and 4e. On
SIFT, their performances are close. When the dataset has
more skewness, the advantage of GR becomes remarkable.
It is faster than the runner-up by up to 4 times on GIST and
8 times on PubChem.

To evaluate the effect of initial partitioning, we run our
partitioning algorithm with three initial states: (1) the pro-
posed method which minimizes entropy (GreedyInit), (2)
equi-width partitioning on the original unshuffled data
(OriginalInit), and (3) equi-width partitioning after random
shuffle (RandomInit).

The query response times on the three datasets are plot-
ted in Figs. 4b, 4d, and 4f. The trends are similar to the pre-
vious set of experiments. On datasets with more skewness,
GreedyInit is consistently faster than the other competitors,
and the gap to the runner-up can be up to 2 times.

As for the query workloadQ to compute dimension parti-
tioning, our results show that the effect of its size on the
query processing performance is not obvious. E.g., when
t ¼ 64, the average query processing times vary from 4.19 to
3.97 seconds on GIST, if we increase jQj from 100 to 1,000.
Thus, we choose 100 as the size ofQ in our experiments.

We also study the effect of partition size on the query
processing performance. Figs. 5a, 5b, and 5c show the query
response times on the three datasets by varying the number
of parts. The general trend is that a smaller m performs bet-
ter under small t settings. When t increases, the best choice
of m slightly increases. The reason is: (1) When t is small, a
small m is good enough. Dividing vectors into unnecessar-
ily large number of parts yields very small parts and
increases the frequency of signatures. (2) When t is large, a
small m means more thresholds will be allocated to a part,
and this results in more candidates. Hence a slightly larger
m is better in this case.

Based on the results, we suggest user choose m 	 n
24 for

GPH for good query processing performance.

9.5 Comparison with Existing Methods
We compare GPH with alternative methods (equipped with
the OS partitioning [53]) for Hamming distance search.

Index are compared first. Figs. 6a, 6b, and 6c show the
index sizes of the algorithms on the five datasets. LSH,
HmSearch, and PartAlloc run out of memory for some t set-
tings on SIFT and GIST. We only show the points when the
memory can hold their indexes. MIHþ reports the same
index size as MIH and thus is not plotted. GPH consumes
more space than MIH due to the machine learning-based
technique to estimate candidate numbers. Both algorithms
consume less space than the other exact competitors. This is
expected as GPH and MIH enumerate signatures on query
vectors only. HmSearch and PartAlloc enumerate 1-deletion

TABLE 3
Estimation with Various Models on GIST (Each Cell Shows
Percentage Error and Prediction Time (ms), Separated by /)

t SP SVM RF DNN

16 1.75%/0.47 1.64%/0.31 8.73%/0.40 1.78%/2.64
32 0.37%/0.77 0.28%/0.28 12.43%/0.39 0.19%/2.60
48 0.15%/2.67 0.10%/0.43 9.26%/0.73 0.08%/3.83
64 0.07%/3.45 0.06%/0.29 3.58%/0.44 0.03%/2.44

Fig. 4. Evaluation of dimension partitioning.

Fig. 5. Effect of partition size.

500 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

variants on data vectors; i.e., removing an arbitrary dimen-
sion from a part and taking the rest as a signature. The var-
iants are indexed and this will increase their index sizes.
PartAlloc and LSH exhibit variable index sizes with respect
to t. LSH has the smallest index size on PubChem, but con-
sumes much more space on the other datasets. The reason is
that PubChem has much more dimensions than the other
datasets. Given a t, the equivalent Jaccard threshold is
higher on PubChem, resulting in less number of signatures.
The corresponding index construction times on GIST are
shown in Table 4. LSH runs out of memory when t ¼ 64,
and thus is only shown for the other t settings. The time of
GPH is decomposed into dimension partitioning and index-
ing.MIH spends the least amount of time on index construc-
tion. Despite more time consumption on partitioning, GPH
spends less time indexing data objects than the other algo-
rithms. We argue that the partitioning can be done offline
and the time is affordable. Because the query workload for
partition computation consists of queries with varying
thresholds, we can run the partitioning once and use the
same partition for different thresholds in real queries. This
is also the reason why GPH has constant index construction
time irrespective of t.

The candidate numbers are plotted in Figs. 7a, 7c,
and 7e. The corresponding query response times are plotted
in Figs. 7b, 7d, and 7f. For all the algorithms, candidate
numbers and running times increase when t moves towards
larger values, and their trends are similar. Thanks to the
tight filtering condition and cost-aware partitioning and
threshold allocation, GPH is consistently smaller than the
other methods in candidate size and faster in query process-
ing. The only exception is that HmSearch has smaller candi-
date size when t ¼ 4 on PubChem, but turns out to be
slower than GPH. This is because HmSearch generates
many signatures whose postings lists are empty, and this
drastically increases signature enumeration and index

lookup times. Although PartAlloc has a tight filtering condi-
tion and utilizes threshold allocation, it is not as fast as
GPH, and even slower than MIH. This result showcases that
PartAlloc’s partitioning and threshold allocation is not effi-
cient for Hamming distance search, though it pays off on set
similarity search. Another interesting observation is that
LSH does not perform well on highly skewed data. The rea-
son is that the hash functions may choose highly skewed
and correlated dimensions, rendering the selectively of the
chosen signatures very bad. On PubChem, LSH’s perfor-
mance is close to a sequential scan. GPH is always the fast-
est. The speed-ups against the runner-up algorithms on the
three datasets are up to 3, 10, and 123 times, respectively.

9.6 Varying Dimensionality
We compare the five competitors to evaluate their performan-
ces when varying the number of dimensions. We sample 25,
50, 75, and 100 percent dimensions from the three datasets,
and then run the experiment. t ¼ 12, 24, and 12 for the 100
percent sample on the three datasets, respectively, and we let
t change linearly with the number of sampled dimensions.
Figs. 8a, 8b, and 8c show the query response times of the algo-
rithms on the three datasets. We observe that the times of all
the algorithms increase with n. There are two factors: (1)
Although t and n increase proportionally, the number of
results increases with n due to dimension correlations. Hence
we have more candidates to verify. (2) The verification cost
increases with n because more dimensions are compared.

Nonetheless, GPH is always the fastest, especially on the
highly skewed PubChem.

9.7 Varying Skewness
We study the performance by varying skewness.6 As seen
from Fig. 1, the relationship between skewness and

Fig. 6. Comparison with alternatives-index size.

TABLE 4
Index Construction Time on GIST (s)

t MIH HmSearch PartAlloc LSH GPH

16 481 1681 1736 583 5026 + 560
32 481 1689 3244 5221 5026 + 560
48 481 1711 7600 64256 5026 + 560
64 481 1747 9605 N/A 5026 + 560 Fig. 7. Comparison with alternatives - candidate number & time.

6. See the footnote in Section 1 for the measurement of dataset
skewness.

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 501

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

dimensions is approximately linear (except PubChem)
on most datasets. On the basis of this observation, the syn-
thetic dataset is generated as follows: The number of dimen-
sions is 128. The mean skewness is controlled by a
parameter g, and the skewnesses of the 128 dimensions
range from 0 to 2g. We set t ¼ 12. The query processing
times are plotted in Fig. 8d. The general trend is that all the
algorithms become slower on more skewed data. This is
expected as signatures become less selective. Thanks to vari-
able partitioning and threshold allocation, GPH is the fastest
among the competitors.

To demonstrate the robustness of GPH, we show that
even if the distribution of real queries is different from the
sample for the partitioning, our method retains good perfor-
mance. We generate a synthetic dataset with a g of 0.5, and
then compute a partition with two query workloads:
g ¼ 0:5 (denoted by GPH-0.5) and g ¼ 0:1 (denoted by
GPH-0.1), respectively. Then we run a set of queries with a
g of 0.1. The gap between GPH-0.5 and GPH-0.1 can be
regarded as the extent to which GPH ’s performance deteri-
orates in the presence of a different query distribution. Then
we set g to 0.1 for the synthetic dataset and run the experi-
ment again. Results are plotted in Figs. 8e and 8f. It can be
seen that even if the partitioning is done with a workload
whose distribution is different from real queries, the query
processing performance is almost the same. A slight change
is noticed only when t is as large as 12: the query processing
speed drops by 11.1 and 4.4 percent, respectively.

9.8 Experiments on Hamming Distance Join
To study the performance of Hamming distance join, we
conduct experiments on GIST and PubChem. 1 million
objects are sampled from the original corpora as R for
self join. Then another 2 million objects are sampled as S
for R-S join.

We decompose the query processing time into three
parts: partitioning, searching for join results, and updating

index and the statistics for candidate number computation.
Figs. 9a and 9b show the decomposed times for self join and
R-S join, respectively. G denotes GIST and P denotes
PubChem. For both joins, we observe: The partitioning time
is the same across different thresholds as we only consider
the entropy to compute the partition. The indexing time is
also approximately constant. Most query processing time is
dedicated to searching, whose time keeps increasing with
the threshold. PubChem consumes more query proces-
sing time due to the more skewness. The difference between
the two joins is that on R-S join, less percentage of overall
time is spent on searching, because this step is optimized
by the vertical scan over S.

We adapt MIH and MIHþ for Hamming distance join and
compare GPH with it. Other methods are not considered as
they have been shown much slower on Hamming distance
search, and all of them follow the same index nested loops
join style as MIH and MIHþ for Hamming distance join. It is
very unlikely that these methods become faster than the
selected competitors. For self join, the candidate numbers
and the running times on the two datasets are plotted in
Figs. 10a, 10b, 10c, and 10d. On both datasets,GPH produces
the least numbers of candidates, and the candidates are
much fewer than MIH and MIHþ. For MIH and MIHþ, almost
all the objects on PubChem become candidates, while GPH
successfully handles this high skewness casewith the thresh-
old allocation. The different in candidate size results in the
significant gaps in running times: GPH is up to 4 and 10
times faster than the runner-up, MIHþ, on GIST and
PubChem, respectively. For R-S join, the candidate numbers
and the running times are plotted in Figs. 11a, 11b, 11c, and
11d. ForGPH, we also study which relation,R (smaller) or S
(larger), should be indexed for better performance. For MIH
andMIHþ, the results are similar to those we have witnessed
in the experiments of self join. For GPH, the candidate

Fig. 9. Join time breakdown.

Fig. 8. Varying number of dimensions and skewness.

Fig. 10. Self join.

502 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

number is much less thanMIH andMIHþ, and it is insensitive
to which relation is indexed. However, indexing the smaller
relation is faster, because more shared computation can be
exploited by the vertical scan of the larger relation. The
speed-up ofGPH (indexingR) overMIHþ is 5 times onGIST
and 9 times on PubChem.

10 RELATED WORK

The notion of Hamming distance search was first pro-
posed in [30]. Due to its wide range of applications, the
problem has received considerable attention in the last
few decades.

A few studies focused on the special case when t ¼ 1 [6],
[7], [27], [51]. Among them, the method in [27] indexes all
the 1-variants of the data vectors to answer the query in
Oð1Þ time and Oð n

t

� 	
Þ space. A data structure was proposed

in [7] to answer this special case in Oð1Þ time using
Oðn logmÞ space by a cell probe model with word sizem.

For the general case of Hamming distance search, the
method by [13] is able to answer Hamming distance search
in Oðmþ log tðnmÞ þ occÞ time and Oðn log tðnmÞÞ space,
where occ is the number of results. In practice, many solu-
tions are based on the pigeonhole principle to convert the
problem to sub-problems with a threshold t0 < t. In [24],
[33], [42], vectors are divided into a number of parts such
that query results must have at least one exact match with
the query in one of the parts. The idea of recursive partition-
ing was covered in [28]. Before that, a two-level partitioning
idea was adopted by the PartEnum method [2]. Song et al.
[41] proposed to enumerate the combinations within thresh-
old t0 in each part to avoid the verification of candidates.
Ong and Bober [35] proposed an approximate method uti-
lizing variable length hash keys. In [53], vectors are divided
into btþ32 c parts, and the threshold of a part can be 0 or 1.
Deng et al. [15] also proposed to use different thresholds,
which are computed by a dynamic programming or a
greedy allocation algorithm.

To handle the poor selectivity caused by data skewness
and dimension correlations, existing work mainly focused
on two strategies. The first is to perform a random shuf-
fle [2] in the original dimensions to avoid highly correlated
dimensions in the same parts. The second is to perform
a dimension rearrangement [26], [45], [53] to minimize
the correlation between dimensions in each part. These
methods are able to answer queries efficiently on slightly

skewed datasets, but the performances deteriorate on
highly skewed datasets.

We note that a strong form of the pigeonhole principle
appears in [9], stating that given n positive integers
q1; . . . ; qm, if ð

Pm
i¼1 qi �mþ 1Þ objects are distributed into m

boxes, then either the first box contains at least q1 objects,
. . ., or the nth box contains at least qn objects. Although the
general pigeonhole principle proposed in this paper coin-
cides with the above strong form, by integer reduction and
�-transformation, the general pigeonhole principle is not
limited to positive integers (this is the reason why GPH per-
forms well on skewed data) and the tightness of threshold
allocation is proved, hence providing a deeper understand-
ing of the principle.

11 CONCLUSION

We proposed a new approach to Hamming distance search.
Observing the major drawbacks of the basic pigeonhole
principle adopted by existing methods, we developed a
new form of the pigeonhole principle, based on which the
condition of candidate generation is tight. The cost of query
processing was modeled, and then an offline dimension
partitioning algorithm and an online threshold allocation
algorithm were devised on top of the model. We extended
our methods to Hamming distance joins, and discussed the
application of the pigeonhole principle in set similarity
search. We conducted experiments on real datasets with
various distributions, and showed that our approach per-
forms consistently well on all these datasets and outper-
forms state-of-the-art methods.

ACKNOWLEDGMENTS

J. Qin, Y. Wang, and W. Wang were supported by ARC DPs
170103710 and 180103411, and D2DCRC DC25002 and
DC25003. C. Xiao and Y. Ishikawa were supported by JSPS
Kakenhi 16H01722.

REFERENCES

[1] D. C. Anastasiu and G. Karypis, “L2AP: fast cosine similarity
search with prefix L-2 norm bounds,” in Proc. IEEE 30th Int. Conf.
Data Eng., 2014, pp. 784–795.

[2] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity
joins,” in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 918–
929.

[3] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proc. 16th Int. Conf.WorldWideWeb, 2007, pp. 131–140.

[4] J. M. Borwein and D. H. Bailey,Mathematics by Experiment - Plausible
Reasoning in the 21st Century. Natick, MA, USA: A K Peters, 2003.

[5] P. Bouros, S. Ge, and N. Mamoulis, “Spatio-textual similarity
joins,” Proc. VLDB Endowment, vol. 6, no. 1, pp. 1–12, 2012.

[6] G. S. Brodal and L. Gasieniec, “Approximate dictionary queries,” in
Proc. 7th Annu. Symp. Combinatorial Pattern Matching, 1996, pp. 65–74.

[7] G. S. Brodal and S. Venkatesh, “Improved bounds for dictionary
look-up with one error,” Inf. Process. Lett., vol. 75, no. 1/2,
pp. 57–59, 2000.

[8] A. Z. Broder, “On the resemblance and containment of doc-
uments,” in Proc. Compression Complexity Sequences, 1997, pp. 21–29.

[9] R. Brualdi, Introductory Combinatorics. Math Classics. London,
U.K.: Pearson, 2017.

[10] Z. Cao, M. Long, J. Wang, and P. S. Yu, “HashNet: Deep learning
to hash by continuation,” in Proc. IEEE Int. Conf. Comput. Vis.,
2017, pp. 5609–5618.

[11] S. Chaidaroon and Y. Fang, “Variational deep semantic hashing
for text documents,” in Proc. 40th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2017, pp. 75–84.

Fig. 11. R-S join.

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 503

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in Proc. IEEE 22nd Int. Conf. Data
Eng., 2006, Art. no. 5.

[13] R. Cole, L.-A. Gottlieb, and M. Lewenstein, “Dictionary matching
and indexing with errors and don’t cares,” in Proc. 36th Annu.
ACM Symp. Theory Comput., 2004, pp. 91–100.

[14] D. Deng, A. Kim, S. Madden, and M. Stonebraker, “SilkMoth: An
efficient method for finding related sets with maximum matching
constraints,” Proc. VLDB Endowment, vol. 10, no. 10, pp. 1082–1093,
2017.

[15] D. Deng, G. Li, H. Wen, and J. Feng, “An efficient partition based
method for exact set similarity joins,” Proc. VLDB Endowment, vol. 9.
no. 4, pp. 360–371, 2015.

[16] D. Deng, Y. Tao, and G. Li, “Overlap set similarity joins with theo-
retical guarantees,” in Proc. Int. Conf. Manage. Data, 2018,
pp. 905–920.

[17] D. R. Flower, “On the properties of bit string-based measures
of chemical similarity,” J. Chemical Inf. Comput. Sci., vol. 38, no. 3,
pp. 379–386, 1998.

[18] N. C. for Biotechnology Information, “The PubChem project,”
2017. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/

[19] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava,
“Fast indexes and algorithms for set similarity metricselection
queries,” in Proc. IEEE 24th Int. Conf. Data Eng., 2008, pp. 267–276.

[20] H. J�egou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in
one billion vectors: Re-rank with source coding,” in Proc. IEEE
Conf. Acoust., Speech and Signal Process., 2011, pp. 861–864.

[21] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms
for approximate string searches,” in Proc. IEEE 24th Int. Conf. Data
Eng., 2008, pp. 257–266.

[22] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin,
“Approximate nearest neighbor search on high dimensional
data-experiments, analyses, and improvement (v1.0),”
arXiv:1610.02455, 2016.

[23] K. Lin, H. Yang, J. Hsiao, and C. Chen, “Deep learning of binary
hash codes for fast image retrieval,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2015, pp. 27–35.

[24] A. X. Liu, K. Shen, and E. Torng, “Large scale hamming distance
query processing,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011,
pp. 553–564.

[25] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing
for fast image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 2064–2072.

[26] Y. Ma, H. Zou, H. Xie, and Q. Su, “Fast search with data-oriented
multi-index hashing for multimedia data,” KSII Trans. Internet Inf.
Syst., vol. 9, no. 7, pp. 2599–2613, 2015.

[27] U. Manber and S. Wu, “An algorithm for approximate member-
ship checking with application to password security,” Inf. Process.
Lett., vol. 50, no. 4, pp. 191–197, 1994.

[28] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting near-duplicates
for web crawling,” in Proc. 16th Int. Conf. World Wide Web, 2007,
pp. 141–150.

[29] W. Mann and N. Augsten, “PEL: position-enhanced length filter
for set similarity joins,” in Proc. 26th Grundlagen von Datenbanken
(Found. Databases), 2014, pp. 89–94.

[30] M. Minsky and S. Papert, Perceptrons-An Introduction to Computa-
tional Geometry. Cambridge, MA, USA: MIT Press, 1987.

[31] R. Nasr, R. Vernica, C. Li, and P. Baldi, “Speeding up chemical
searches using the inverted index: The convergence of chemoin-
formatics and text search methods,” J. Chem. Inf. Model, vol. 52,
pp. 891–900, 2012.

[32] M. Norouzi, “Multi-index hashing,” 2014. [Online]. Available:
https://github.com/norouzi/mih

[33] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast search in hamming
space with multi-index hashing,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 3108–3115.

[34] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast exact search in ham-
ming space with multi-index hashing,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 6, pp. 1107–1119, Jun. 2014.

[35] E. Ong and M. Bober, “Improved hamming distance search using
variable length hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 2000–2008.

[36] H. Park and L. Stefanski, “Relative-error prediction,” Statist. Prob-
ability Lett., vol. 40, no. 3, pp. 227–236, 1998.

[37] J. Qin, Y. Wang, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa, “GPH:
Similarity search in hamming space,” in Proc. IEEE 34th Int. Conf.
Data Eng., 2018, pp. 29–40.

[38] J. Qin and C. Xiao, “Pigeonring: A principle for faster thresholded
similarity search,” Proc. VLDB Endowment, vol. 12, no. 1,
pp. 28–42, 2018.

[39] L. A. Ribeiro and T. H€arder, “Generalizing prefix filtering to
improve set similarity joins,” Inf. Syst., vol. 36, no. 1, pp. 62–78, 2011.

[40] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predi-
cates,” in Proc. Int. Conf. Manage. Data, 2004, pp. 743–754.

[41] J. Song, H. T. Shen, J. Wang, Z. Huang, N. Sebe, and J. Wang, “A
distance-computation-free search scheme for binary code data-
bases,” IEEE Trans. Multimedia, vol. 18, no. 3, pp. 484–495,
Mar. 2016.

[42] Y. Tabei, T. Uno, M. Sugiyama, and K. Tsuda, “Single versus mul-
tiple sorting in all pairs similarity search,” J. Mach. Learn. Res.-
Proc. Track, vol. 13, pp. 145–160, 2010.

[43] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny
images: A large data set for nonparametric object and scene recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11,
pp. 1958–1970, Nov. 2008.

[44] S. A. Vinterbo, “A note on the hardness of the k-ambiguity prob-
lem,” Technical Report DSG-T R-2002-006, Harvard Medical
School, Boston, MA, Jun. 2002.

[45] J. Wan, S. Tang, Y. Zhang, L. Huang, and J. Li, “Data driven multi-
index hashing,” in Proc. IEEE Int. Conf. Image Process., 2013, pp.
2670–2673.

[46] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: An
adaptive framework for similarity join and search,” in Proc. Int.
Conf. Manage. Data, 2012, pp. 85–96.

[47] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity
search: A survey,” arXiv:1408.2927, 2014.

[48] P. Wang, C. Xiao, J. Qin, W. Wang, X. Zhang, and Y. Ishikawa,
“Local similarity search for unstructured text,” in Proc. Int. Conf.
Manage. Data, 2016, pp. 1991–2005.

[49] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang, “Leveraging set
relations in exact set similarity join,” Proc. VLDB Endowment,
vol. 10, no. 9, pp. 925–936, 2017.

[50] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient similar-
ity joins for near-duplicate detection,” ACM Trans. Database Syst.,
vol. 36, no. 3, pp. 15:1–15:41, 2011.

[51] A. C.-C. Yao and F. F. Yao, “Dictionary look-up with one error,” J.
Algorithms, vol. 25, no. 1, pp. 194–202, 1997.

[52] W. Zhang, K. Gao, Y. Zhang, and J. Li, “Efficient approximate
nearest neighbor search with integrated binary codes,” in Proc.
19th ACM Int. Conf. Multimedia, 2011, pp. 1189–1192.

[53] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu, “HmSearch: An effi-
cient hamming distance query processing algorithm,” in Proc.
25th Int. Conf. Sci. Statistical Database Manage., 2013, pp. 19:1–19:12.

[54] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan, “An effi-
cient framework for exact set similarity search using tree structure
indexes,” in Proc. IEEE 33rd Int. Conf. Data Eng., 2017, pp. 759–770.

Jianbin Qin received the BE degree from North-
eastern University, China, in 2007, and the PhD
degree from the University of New South Wales,
in 2013. He is a research fellow at the School of
Informatics, the University of Edinburgh. His
research interests include data integration, textual
databases, and information retrieval.

Chuan Xiao received the BE degree from
Northeastern University, China, in 2005, and
the PhD degree from the University of New
South Wales, in 2010. He is a specially
appointed associate professor in the Graduate
School of Information Science and Technology,
Osaka University, and a guest associate pro-
fessor in the Graduate School of Informatics,
Nagoya University. His research interests
include data cleaning, data integration, textual
databases, and graph databases.

504 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

https://pubchem.ncbi.nlm.nih.gov/
https://github.com/norouzi/mih

YaoshuWang received the PhD degree from the
University of New South Wales, in 2018. He is a
researcher at the Shenzhen Institute of Comput-
ing Sciences, Shenzhen University. His research
interests include similarity search, data integra-
tion, and textual databases.

Wei Wang received the PhD degree from the
Hong Kong University of Science and Technol-
ogy, in 2004. He is a professor with the University
of New South Wales. His research interests
include data integration, information retrieval,
and query processing and optimization.

Xuemin Lin received the BSc degree from Fudan
University, in 1984, and the PhD degree from the
University of Queensland, in 1992. He is the sci-
entia professor with the University of New South
Wales (UNSW), and a concurrent professor with
the School of Software, East China Normal Univer-
sity. Before joining UNSW, he held various aca-
demic positions with the University of Queensland
and the University ofWestern Australia. He is a fel-
low of the IEEE. His research interests lie in data
streams, approximate query processing, spatial
data analysis, and graph visualization.

Yoshiharu Ishikawa received the BS, ME, and
Dr Eng degrees from the University of Tsukuba, in
1989, 1991, and 1995, respectively. He is a profes-
sor in the Graduate School of Informatics, Nagoya
University. His research interests include spatio-
temporal databases, mobile databases, sensor
databases, data mining, information retrieval, and
e-science. He is amember of the IEEE.

Guoren Wang received the PhD degree from
Northeastern University, China, in 1996. He is a
professor with the School of Computer Science &
Technology, Beijing Institute of Technology (BIT),
China. Before joining BIT, he was a professor at
Northeastern University, China. His research inter-
ests include graph databases, query processing
and optimization, and XML data management. He
is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

QIN ET AL.: GENERALIZING THE PIGEONHOLE PRINCIPLE FOR SIMILARITY SEARCH IN HAMMING SPACE 505

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on July 15,2022 at 09:17:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

