The VLDB Journal (2020) 29:919-943
https://doi.org/10.1007/s00778-019-00595-4

REGULAR PAPER O‘)

Check for
updates

Efficient query autocompletion with edit distance-based error
tolerance

Jianbin Qin' - Chuan Xiao?3 . Sheng Hu3# . Jie Zhang® - Wei Wang® - Yoshiharu Ishikawa? - Koji Tsuda’ -
Kunihiko Sadakane’

Received: 6 November 2018 / Revised: 1 April 2019 / Accepted: 12 August 2019 / Published online: 14 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Query autocompletion is an important feature saving users many keystrokes from typing the entire query. In this paper,
we study the problem of query autocompletion that tolerates errors in users’ input using edit distance constraints. Previous
approaches index data strings in a trie, and continuously maintain all the prefixes of data strings whose edit distances from
the query string are within the given threshold. The major inherent drawback of these approaches is that the number of
such prefixes is huge for the first few characters of the query string and is exponential in the alphabet size. This results in
slow query response even if the entire query approximately matches only few prefixes. We propose a novel neighborhood
generation-based method to process error-tolerant query autocompletion. Our proposed method only maintains a small set of
active nodes, thus saving both space and time to process the query. We also study efficient duplicate removal, a core problem
in fetching query answers, and extend our method to support top-k queries. Optimization techniques are proposed to reduce
the index size. The efficiency of our method is demonstrated through extensive experiments on real datasets.

Keywords Query autocompletion - Similarity Search - Database - Neighbourhood generation tree

1 Introduction

Autocompletion guides users to type the query correctly and
efficiently. Due to the convenience it brings to the users and

B Jianbin Qin the server, it has been adopted in many applications. For
jgin@sics.ac.cn example, search engines like Google dynamically suggest
Chuan Xiao keywords, and can optionally show top-ranked search results

chuanx @nagoya-u.jp

Sheng Hu
hu.sheng.4s @kyoto-u.ac.jp

Jie Zhang
jiezhang1984 @xaut.edu.cn

Wei Wang
weiw @cse.unsw.edu.au

Yoshiharu Ishikawa
ishikawa@i.nagoya-u.ac.jp

Koji Tsuda
tsuda@k.u-tokyo.ac.jp

Kunihiko Sadakane

sada@mist.i.u-tokyo.ac.jp

Shenzhen Institute of Computing Sciences, Shenzhen
University, Shenzhen, China

Osaka University, Osaka, Japan

while users are typing a query. Other applications include
desktop searches, command shells, text editors, and mobile
applications. In some applications, especially for mobile
devices, typing accurately is a tedious task and the user’s
input tends to contain typographical errors. Consequently, it
is necessary for query autocompletion to tolerate errors when
the user types in a query. Among the various approaches
to deal with typographical errors, edit distance is a good

Nagoya University, Nagoya, Japan

Kyoto University, Kyoto, Japan

Xi’an University of Technology, Xi’an, China

The University of New South Wales, Sydney, Australia
The University of Tokyo, Tokyo, Japan

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00595-4&domain=pdf

920

J.Qinetal.

measure for text documents and, therefore, has been widely
adopted and studied [17,23,37,43,77].

The state-of-the-art solutions to the query autocompletion
with edit distance constraints adopt the following paradigm:
indexing data strings in a trie, and traversing the trie incre-
mentally to compute edit distance between the paths and the
current query string as each character of the query comes.
Only the paths that satisfy the edit distance constraints are
kept, and the end of these paths are called active nodes. Its
performance has been shown to be superior to alternative
paradigms such as g-grams [17]. Nevertheless, the efficiency
of this approach critically depends on the number of active
nodes, which is typically very large in practice (in the order of
107 for the methods in [17,37]), and linear in the database size
or exponential in the alphabet size in the worst case. Some
techniques have been proposed to alleviate the problem, e.g.,
maintaining only a chosen subset of active nodes [23,43,77],
or using buffered strategy and precomputation [17]); how-
ever, the query processing time is still long as there are still
a huge number of active nodes to maintain when the first
few characters of the query string are typed in. The situation
will be even worse for the applications in which strings have
large-sized alphabets, e.g., Unicode or CJK characters.

In this paper, we explore in the following direction: Can
we drastically improve the runtime performance by prepro-
cessing the data and build a large but affordable-sized index?
We devise a novel solution by indexing the deletion-marked
variants of the data strings in a trie, and keeping a small set
of active nodes during query processing.

Rather than index the original data strings, we index their
deletion-marked variants, which are generated by deleting
at most 7 (the edit distance threshold) characters from the
strings. When the user inputs a query, its deletion-marked
variants are also (implicitly) generated and searched in the
trie. This process can be performed incrementally and effi-
ciently by maintaining a small set of active states whose
size is small—typically in the order of 103—and insensitive
to the alphabet size. To intuitively understand why this can
be achieved by the deletion-marked variants, consider this
example: Let the query string be ab. All the strings such
as aba, abb, ..., abz can be represented as a single vari-
ant ab# (“#” means the corresponding character is deleted)
which has an edit distance of 1 to the query string. Based
on this idea, we develop the INcNGTrie algorithm for error-
tolerant query completion. To further reduce the number of
active states (to the order of 10), we remove redundant active
states and propose the IncNGTrie+ algorithm.

In addition, we propose efficient duplicate removal tech-
niques when fetching query results—a problem existing in
previous approaches yet not fully investigated. We also study
the case of processing top-k queries, in which results are
ranked by a function monotonic in both edit distance and
static score. When not optimized, our index size is large

@ Springer

due to the inclusion of deletion-marked variants. Hence
we introduce effective techniques to reduce the size of the
index by eliminating different kinds of redundancy in the
index. Finally, the superiority of our solution is demonstrated
through extensive experimental evaluation.

We also note that we only focus on the single keyword
case in this paper, but our method can be extended to support
the multiple keyword case by taking intersection after result
fetching [43,44]. For example, an inverted index is built to
associate each keyword with a list of document (or term) IDs
to indicate the documents (or terms) that contain the key-
word. For each input keyword in the query, we identify the
indexed keywords that contain the input as a prefix, using
our method. Then an intersection is invoked to find the doc-
uments (or terms) having all the keywords. We may also use
the threshold algorithm (TA) [26] on top of our method to
efficiently retrieve top-k results for the case of multiple key-
words. Moreover, the results tolerated by the edit distance
constraints can serve as a set of candidates fed to language
model-based postprocessing methods [24,25,29] for better
error correction.

Our contributions can be summarized as:

— We solve the error-tolerant query autocompletion prob-
lem with edit distance constraints by utilizing deletion-
marked variants. We develop indexing, searching, and
result-fetching techniques for query processing, as well
as optimization techniques to reduce index size to an
affordable level.

— We design two neighborhood generation-based algo-
rithms INncNGTrie and IncNGTrie+ that integrate the
developed techniques. Unlike previous approaches, they
achieve very small and alphabet-insensitive active node
sizes to speed up query processing.

— We conduct extensive experiments on several real
datasets. The proposed method has been shown to sig-
nificantly outperform previous approaches in terms of
query response time.

Compared to the conference version of this work [70], we
make the following substantial improvements:

— Animproved searching algorithm (IncNGTrie+) is devel-
oped to reduce the number of active states and searching
time.

— The original duplicate removal technique for Case 1
duplicates is replaced with a faster and easier-to-
understand one.

— In order to answer top-k queries, non-trivial extension
techniques are developed.

— The new techniques and the performance of top-k query
processing are empirically evaluated.

Efficient query autocompletion with edit distance-based error tolerance

921

The rest of the paper is organized as follows: section 2
defines the problem and introduces preliminaries. Section 3
presents the index and the searching phase of our neighbor-
hood generation-based algorithms. Section 4 elaborates the
result-fetching phase of the algorithms. The processing of
top-k queries is covered by Sect. 5. The techniques to reduce
index size are presented in Sect. 6. Section 7 discusses miscel-
laneous issues, including deletion of characters in the query
and updates in data strings. Experimental results and analy-
ses are covered by Sect. 8. Section 9 reviews related work.
Section 10 concludes the paper.

2 Preliminaries
2.1 Problem definition

Let X be a finite alphabet of symbols; each symbol is also
called a character. A string s is an ordered array of symbols
drawn from X. |s| denotes the length of s. s[i] is the ith
character of s, starting from 1. s[i .. j] is the substring of s
between positions i and j. Given two strings s and s’, s" < s
denotes that s’ is a prefix of s;i.e., s = s[1..i],1 <i < |s].
The symbol o denotes the concatenation of strings.

ed (s, t) returns the edit (Levenstein) distance between two
strings s and 7, which measures the minimum number of edit
operations, including insertion, deletion, and substitution of
a character, to transform s to ¢, or vice versa. It can be com-
puted in O(|s||¢]) time and O (min(|s|, |¢])) space using the
standard dynamic programming [63]. An efficient thresh-
olded edit distance computation tests whether ed(s,t) < t
in O(t - min(|s|, |f])) time [62]. The error-tolerant query
autocompletion with edit distance constraints is defined as
follows.

Problem 1 Given a collection of data strings S, a query string
g, and an edit distance threshold 7, an error-tolerant query
autocompletion is to return all the strings s € S, such that
3s’ < s5,ed(s’, q) < t. The results are computed incremen-
tally as the user types in characters.

As the number of results can be large, we may return the
top-k ones sorted by a ranking function. We first focus on the
case of thresholded queries and then describe the extension
to top-k queries.

2.2 Analysis of previous approaches

Chaudhuri and Kaushik [17] and Ji et al. [37] independently
developed solutions to processing error-tolerant query auto-
completion with edit distance constraints. The techniques
proposed in the two studies are similar. In an offline indexing
phase, data strings are organized in a trie. For online query
processing, in the searching phase, they maintain the set of

the prefixes of the data strings that are within edit distance
T from the query string. The end of these prefixes in the trie
are called active nodes or valid nodes. Whenever a char-
acter is appended to the query string, the set of new active
nodes is computed using current active ones. In the result-
fetching phase, the data strings stored under the active nodes
are returned as results. The time complexity of processing an
input keystroke is O(t - (|A| + |A’])), where A and A’ are
the active node sets before and after inputting a keystroke,
respectively. Li et al. [43] improved the method proposed in
[37], presenting the notion of pivotal active nodes, which are
composed of a subset of active nodes with last characters
being neither substituted nor deleted; in other words, the last
character reaching the node must be a match in an alignment
that yields the edit distance between the query string and the
prefix. By considering only pivotal active nodes, it improves
the time complexity to O(z - (|P| + |P’|)), where P and
P’ are the pivotal active node sets before and after inputting
a keystroke. Zhou et al. proposed the BEVA algorithm [77]
which achieves minimum active node size by eliminating
ancestor—descendant relationship among active nodes. It has
a time complexity of O(t + |B| + |B’|), where B and B’
are the active node sets before and after the keystroke, as
defined by the algorithm. Deng et al. proposed the META
algorithm [23] that finds active nodes using only matching
characters and utilizes a compact tree index to speed up the
process of searching active nodes.

We call the above algorithms direct trie-based approaches
as their indexing methods are to construct a trie directly
on data strings. The main drawback of the direct trie-based
approaches is the large active node size. Even for BEVA,
which minimizes active node size, the size of active nodes
canbeupto O(|¢|*|X|") inthe worst case. For example, con-
sidering a query string “abc” and T = 1, the active nodes
include all the prefixes in the pattern of “?bc” or “a?c”.
The problem is even serious for the first few keystrokes of
the query, since the set of active nodes includes the prefixes
from an enormous subset of data strings. We call this problem
early stage explosion.

2.3 FastSS

A category of approaches to string similarity queries with edit
distance constraints is the neighborhood generation-based
approaches [9], which generate a set of strings within a cer-
tain edit distance from a query string. Among this category,
the FastSS [7] algorithm utilizes deletion neighborhood [50]
and achieves fast query processing speed for short strings
under a small t. We briefly summarize FastSS in order to
best understand our proposed method.

We use A(s, p) to denote the transformation of string
s by deleting the character at position p. For exam-
ple, A(brisbane,3) = brsbane. The deletions can

@ Springer

922

J.Qinetal.

be applied recursively. For a number of deletions k, we
use A(A(...A(s, p1), p2),..., pr) to denote the resul-
tant string after k deletions, and call [p1, p2, ..., pr]
the deletion list of the resultant string. For example, A
(A(brisbane, 2),2) = bsbane, and the deletion list is
[2,2]. In order to avoid duplicate deletion lists, a deletion
is restricted to occur only after all previous deletions; i.e.,
Di+1 = Di.

For a given string s and a number of deletions k, we call
X, a resultant string after deleting k characters from s at any
possible positions, a k-variant of s. The pair (x, D,) is called
a variant-list pair, where D, is the deletion list to transform
s to x. The union of s’ i-variant-list pair (0 < i < k) forms
the k-variant family of s, denoted by V (s, k).

The following lemma enables us to convert the edit
distance constraint to an equivalent condition on variant fam-
ilies.

Lemma 1 (Variant Matching Principle [7]) Given two strings
s and t, ed(s,t) < t, if and only if there exist (x, Dy) €
V(s,t) and (y, Dy) € V(t,1), such that x = y and
[DyUD,y| <.

Note that multiplicities are considered when comput-
ing the union of two multisets: Let mul(e, D,) denote the
multiplicity (number of occurrences) of an element e in
a multiset D,. To take the union of two multisets, the
multiplicity of the element e in the result is the larger
of mul(e, Dyx) and mul(e, Dy). For example, [1,1,2] U
[1,2,2] = [1,1,2,2]. We call the size of the union of
their deletion lists’ the incoordination of two variants.

Example 1 Consider two strings s = brisbane and t =
brosbne. The edit distance is 2. They share a common vari-
ant “brsbne”. The corresponding deletion lists are [3, 5]
and [3]. The incoordination is 2.

For error-tolerant query autocompletion, the variant match-
ing principle can be adapted to handle the case when the edit
distance does not exceed T between a string’s prefix and a
whole string.

Lemma 2 (Variant Matching Principle for Prefix) Given two
strings s and t, s’ < s and ed(s', t) < 7, if and only if there
exist (x, Dy) € V(s,t) and (y, Dy) € V(t, 1), such that
y Xxand|D;UDy| <T.

Proof We first prove its necessity. Because ed(s’, 1) < t
by Lemma 1, there exists (x’, D}) € V(s/,7) st. x' =y
and |D} U Dy| < 7. Let D, = D). We delete from s the
characters at position p; € D, and obtain the variant x.
Because s” < s, x” < x. Therefore, y < x and |[Dy U Dy| <
T.

Then we prove its sufficiency. Consider a string s
and its variant-list pair (x’, D.), where x’ = y, D, =

/

@ Springer

i ﬁﬂ

Fig. 1 Index of IncNGTrie (s; = test, s) = text,t = 1)

{ pi | pi € Dy, pi <|y|}. The deleted characters are s[p; +
i — 1] for any p; € D). Because D), C D, |D, UD,| <.
Hence by Lemma 1, ed(s’, t) < 7. Because D, contains all
the deletions in the first (|x’| 4+ | D/ |) characters of s, and

x'=y <x,wehaves =s[l..|x'|+|D,|];ie,s <s. O

3 Neighborhood generation-based
algorithms

3.1 The IncNGTrie algorithm

Based on neighborhood generation, we introduce a new algo-
rithm for error-tolerant query autocompletion.

By Lemma 2, one can design an algorithm to process
the query when characters are incrementally appended. The
query string’s new variants can be easily generated by
appending these characters and searching for their matches in
the prefixes of data strings’ variants. However, incrementally
computing incoordination is a challenging task. Variants and
their corresponding deletion lists are separately processed
in the FastSS algorithm, rendering it difficult to compare
variants while computing incoordination at the same time.
Seeing this challenge, we resort to deletion-marked vari-
ants, namely, to use a “#” to denote a character deleted
from a data string. For example, “brsbne”, a 2-variant
of “brisbane”, will be represented as “br#sb#ne”. A
deletion-marked variant combines the string content of a vari-
ant and its deletion list. As a result, by scanning the two
deletion-marked variants from left to right, we are able to
incrementally check whether the contents match and whether
the incoordination exceeds the threshold at the same time.
Now we design the offline indexing phase of our algorithm:
The t-variant families of all the strings in S are generated
and deletion-marked. In order to efficiently process the prefix
lookup, we index the deletion-marked variants in a trie. The
algorithm is named IncNGTrie, standing for “Incremental
Neighborhood Generation on a Trie index”.

Example2 Consider S = {test,text}, and t = 1.
Figure 1 shows the trie constructed using the INcNGTrie algo-

Efficient query autocompletion with edit distance-based error tolerance

923

rithm. Each path from the root to a leaf node represents a
deletion-marked variant of a data string.

By indexing deletion-marked variants, the positions of the
deletions on the data strings can be retrieved through the
traversal of the trie. They are compared with the deletions
enumerated on the query string to get the incoordination.
Before presenting the searching phase of the algorithm, we
define an active state, as a triplet (n, u, §), where n is a node
in the trie, u is called a cursor, indicating it is expecting the
uth character of the query string, and § denotes the incoor-
dination that has been encountered. An active state specifies
that a variant of the first (v — 1) characters of the query string,
i.e., g[l..u — 1], matches a prefix of a data string’s variant,
represented by the path from the root to n with an incoordina-
tion of 5. When the user types the uth character of the query
string, the active state reads in the character and propagates
new active states: First, if n has a child n” through edge label
qlul,{n’, u + 1, 8) becomes active. Second, we may impose
a number of deletions at the end of the query string, and thus
(n',u+ dy, 8 + d,) becomes active, whered,, € [1..7—4].
Third, we may also impose deletions on the data string, and
thus (n”, u + dy, § + max(dy, ds)) becomes active, where
n” is a descendant of n’ through d, #’s,d, € [1..7 — 8] and
dg e[l..T =34].

Following the above active state propagation strategy, we
design the searching phase of the INncNGTrie algorithm. The
pseudo-code is provided in Algorithm 1.

— It first initializes a set of active states (Line 1). As we
are allowed to make at most t deletions at the begin-
ning of either the query or a data string, the initial active
states involve the root of the trie and the nodes that can be
reached through no more than t #’s. Algorithm 2 shows
how active states are generated on a node and its descen-
dants through a number of #’s.

— When the user types a keystroke g[v], the algorithm
computes new active states with the current ones. For
the current active states with u > v, they will still be
active (Line 6) as the uth character has not come yet.
For the other current active states, we include their chil-
dren through edge label g[v] into the new active states
(Line 9). The children’s descendants through edge label
are also included, like what we have done to the root
and its descendants through # in the initialization step,
but the number of available deletions is T — § here.

— Finally, the string IDs under the nodes of active states
whose cursors are v + 1 will be returned as the results of
the query. We dedicate the details of the result-fetching
phase in Sect. 4.

Example 3 Consider a query ¢ = tas. Table 1 shows the
active states for each keystroke using the IncNGTrie algo-
rithm.

Table 1 Active states for ¢ = tas using INcNGTrie

Key 0 t a s
Active states (1,1,0) (1,2, 1) (2,3,1) (13,4,1)
(1,2,1) (17,2,1) (12,3,1)
(17,1,1) (2,2,0)
(17,2,1) (2,3,1)
(12,2,1)
(12,3,1)

Algorithm 1: IncrementalSearch (¢, t, T)
Input

: ¢ is a query string input character by character; t is an
edit distance threshold; 7 is a trie built on the
deletion-marked t-variant family of the data strings in
S.

Output :s € S, suchthat3s’ < s, ed(s’, q) < t.
1 A < PropagateActiveStates (r,1,0,7); /* r: the root

of T */
2 foreach keystroke ¢[v] do
3 A <0, /* new active states */
4 foreach (n,u,§) € A do
5 if u > v then
6 | A <~AU{(nud)}
7 else
8 if n has a child n’ through label ¢[v] then
9 A~ A'U

L PropagateActiveStates (n', u + 1, 8, 7);

10 A<« A}
11 R < 0

12 foreach (n,u,8) € Asuchthatu = v+ 1do
13 L R < R U string IDs stored on the nodes reachable from n;

14 return R

Now we analyze the worst-case time complexity per
keystroke using the IncNGTrie algorithm. !

We divide active states in A into two groups: those with
u = |q| and those with u € [|g| + 1..|q| + t]. For the
first group, the time complexity of propagating a state is
O (max(l, (t —8)?)) in Algorithm 2. The number of states in
this group with incoordinations equal to § is O (z(|g| + 8)°).
Because 6 € [0..], the time complexity of processing the
first group states is O(z(|g| + t)%). For the second group,
as they are inserted into new active state set without further
actions, the time complexity of processing this group is the
scale of the group size; i.e., O(t(|g| + T —u + |g|)T 4 *lal)
for each . Combining the costs on the two groups, the time
complexity is O(t(|g| + ©)7).

Compared with the so far most efficient direct trie-based
methods, whose time complexity is O (|¢|*| ¥'|*), the runtime
cost of IncNGTrie is independent of the alphabet size. Hence

! The worst case may happen for the first few keystrokes, when the
prefixes of most data strings have their edit distances within t from the
query string.

@ Springer

924

J.Qinetal.

Algorithm 2: PropagateActiveStates (n, u, §, 7)
Input

. n is anode; u is a cursor; § is an incoordination; T is
an edit distance threshold.
Output : A new active state set A propagated from (n, u,§).
1 A< 0
2 ford; =0totr — 5 do
string */
3 L A<~ AU{(nu+dy,6+dy)};
dy < 1; /* dy: deletions on data string */
while § + d; < 7 and n has a child n’ through label # do
ford, =0tot — 5 do
L 8 < max(dy, dy);
A<—AU{(n u+d;, 8 +8)}

9 n<n',dy <d;+1;

/* dy: deletions on query

® N n B

0 return A

=

it does not suffer from the early stage explosion. The rationale
behind is that all the paths whose edit distance are within t
from the query string share the same variants, and we do not
need to activate them respectively in consequence. For the
example of a query string “abc” and T = 1, the paths in
the pattern of “?bc” or “a?c”, which are inevitably active
for direct trie-based methods, will be found by IncNGTrie
through only two paths “#bc” and “a#c”.

3.2 The IncNGTrie+ algorithm

Although the IncNGTrie algorithm avoids the early stage
explosion and achieves a time complexity regardless of the
alphabet size, it still propagates redundant active states for
the following reasons:

— When applying deletions on the query side, the active
states whose cursor values are greater than |g| 4 1 are
also generated, but they bear nothing on the results of
the current query. For example, in Table 1, (2,3,1)
and (12, 3, 1) are generated when ¢ = t, but we only
need the active states whose cursor values are 2 to output
results.

— When applying deletions on the data string side, the nodes
in the active states are of an ancestor—descendant relation-
ship. For example, in Table 1, when ¢ = ta, (12,3,1)
is propagated from (2, 3, 1), which is also active for the
current query. Since node 12 is a descendant of node 2,
the string IDs reachable from (12, 3, 1) are a subset of
those from (2, 3, 1), meaning that (12, 3, 1) can be dis-
carded when we report the results for the current query.

— Multiple active states may reside on the same node. This
means that the prefix of a data string’s variant may match
multiple variants of the query string. It is interesting to
see that some matches are better than others in terms
of incoordination. For example, a#a matches both a#a
and #aa. The former is better because its incoordination

@ Springer

is 1 while the latter’s is 2. Since incoordinations never
decrease as the algorithm runs, some active states can
be discarded while not affecting the correctness of the
algorithm.

We propose an improved version of the InCNGTrie algo-
rithm, called IncNGTrie+, by addressing the above three
issues respectively:

— We only generate active states with cursor values equal
to|g| + 1.

— We propagate active states in a lazy manner to avoid
redundant deletions on the data string side. Now dele-
tions are applied on the data string side only when the
next keystroke comes.

— We compare active states and pick better ones. Given two
active states x and y on the same node n, if for all ¢, t,
and subtrees rooted at n, the nodes in the active states
propagated from x are always a subset of those propa-
gated from y, we say x is dominated by y. In this case, x
can be safely discarded from the active state set, because
all the data strings reachable from x are subsumed by
those from y.

With the first improvement, the cursor becomes trivial and
can be removed from the active state triplet. However, this
will result in difficulty in computing incoordinations when
propagating states since the triplet does not keep the con-
tent of the query string’s variant. Our remedy is to record
the difference in the numbers of trailing deletions between
the two matching variants. For example, suppose the query
string’s variant x = a##b###, and the prefix of a data
string’s variant y = a#b#. The difference is 2 because x has
3 trailing deletions, while y has 1. Let tdqyery and tdgaca be
the numbers of trailing deletions of the query string and the
data string, respectively. Let @ denote their difference; i.e.,
® = tdquery — tdaara. An active state is then represented
by (n, 8, w). When we propagate (n,§,) to a new state
(n’,8,w), where n’ is a child of n, there are three cases to
determine 8’ and o'

— A keystroke matches the edge label ton’: §' = §. ' = 0.

— A deletion is applied on the query string: 8 = § + 1, if
@ > 0; or §, otherwise. o = w + 1.

— A deletion is applied on the data string: 8’ = § + 1, if
w < 0;or 8, otherwise. v’ = w — 1.

In other words, whether incoordinations increase depends on
whether the deletion is applied on the side with more trailing
deletions.

Example 4 Consider an active state (n, 5,2) which repre-
sents that the query string’s variant a ##b### matches a data

Efficient query autocompletion with edit distance-based error tolerance

925

Algorithm 3: IncrementalSearchPlus (¢, t, T)
Input

: ¢ is a query string input character by character; 7 is an
edit distance threshold; T is a trie built on the
deletion-marked t-variant family of the data strings in

S.
Output : s € S, such that 3s’ < s, ed(s’, q) < 7.
1 A< {(r,0,0)};
2 foreach keystroke ¢[v] do
3 A« @,
4 foreach (n,8,w) € Ado
5 § «—1; /* w>0 always holds for A */
6 if§+68 <tand(n,§ +§,w+ 1)isnotdominated by
any state in A’ then
7 remove from A’ the states dominated by
(n,8+68,w+1);
8 Al AU{(nd+8 w+1)}; /* deletion
on query string */
9 do
10 if § < 7 and n has a child n’ through label ¢[v] then
11 if (n’,8,0) is not dominated by any state in A’
then
12 remove from A’ the states dominated by
(n',8,0);
13 A <~ A'U{(n,58,0)}; /* match gq[v]
*/
14 if ® < 0thend’ < 1lelsed <« O;
15 if n has a child n’ through label # then
16 (n,8,w) < (n',84+68, 0w—1);
/* deletion on data string */
17 else
18 L break;
19 while true;
20 A< A
21 R < 0;

22 foreach (n,5,w) € A do
23 L R < R U string IDs stored on the nodes reachable from n;

24 return R

string’s variant a#b#. If the next keystroke is a and n has an
outgoing edge a, we have a state (n o a, 5, 0), representing
that a##b###a matches a#b#a. If a deletion is applied on
the query string, we have a state (n, 6, 3), representing that
a##b#### matches a#b#. If a deletion is applied on the
data string, we have a state (n o #, 5, 1), representing that
a##b### matches a#bi##.

With the aforementioned three improvements, we design
the IncNGTrie+ algorithm, whose searching phase is shown
in Algorithm 3. Compared to Algorithm 1, it makes the fol-
lowing modifications to reflect the three improvements.

— There is only one initial active state (r, 0, 0) (Line 1), as
opposed to (t 4 1)? initial states in Algorithm 1. When
processing a keystroke, at most one deletion is imposed
on the query string (Lines 5 —8).

— Only when we try to match the current keystroke
(Lines 10 —13), a number of 0 to T — § deletions are
imposed on the data string (Lines 14-18).

— Dominated active states are removed (Lines 6 —7 and 11
-12).

Due to the second improvement, the IncNGTrie+ algo-
rithm guarantees that for all the active states in A or A’, the
number of trailing deletions on the query string is no less than
that on the data string. This implies that only the active states
with nonnegative values will be stored in A and A’, though
intermediate states with negative w values may exist during
the propagation process (Lines 14 —18). Moreover, when we
apply a deletion on the query side, since w is always nonneg-
ative, we do not have to compare it with O to decide the value
of §' (Line 5).

Before inserting an active state x into A’, we need to check
whether x is dominated by any state already in A’, and remove
from A’ the states dominated by x. The dominance relation-
ship for two active states whose w > 0 is equivalent to the
condition stated in the following lemma.

Lemma3 Given two active states {(n,81,w1) and
(n, 82, wy) such that wy > 0 and wr, > 0, (n, 1, wy)
is dominated by (n, 8>, wy), if and only if §1 > & and

31— 8 = w — wy.

Proof We abuse n to denote both the node and the string from
the root to n. Let — denote that an active state is propagated
to another. Let a character ¢ = ¢g[v].

We first prove the necessity by contradiction. If §; < 8,
we apply T — &1 #’s on data string and then match through
keystroke c. (n,81,w;) - (nodoc,t,0), where d con-
sists of T — 81 #’s. Because 61 < 87,82 + 17 — 8 > T.
This means that the node n o d o ¢ cannot be propagated
from (n, 62, w2), thus contradicting that (n, §1, w1) is dom-
inated by (n, 62, w2). If §1 — §» < w1 — w3, there are two
cases: w1 < wy and w; > wy. If w1 < wy, §; < §,. This
case has been proved. So we only need to prove the case
when w; > wy. We apply w; + t — §; deletions on data
string and then match through keystroke c. (n, 81, w1) —
(nodoc,t,0),whered consists of w;+1—3§; #’s. Because
851 — & < w; — wr, w1 > wy, and T > §1, we have
&2 + max(0, w; + 7 — §; — w2) > 7. This means that the
node n o d o ¢ cannot be propagated from (n, 2, w;), thus
contradicting that (n, 81, w;) is dominated by (n, §2, w2).

Then we prove the sufficiency by induction; i.e., given two
active states (n, 81, w) and (n, 82, wy) such that w; > 0,
wy > 0,87 > 8,and 81 — 87 > w| —wy, the new active states
propagated from them will reside on the same node and also
satisfy the above condition. Because the two states are both
on n, the base case holds. For the inductive step, there are
three cases of node propagation in Algorithm 3:

@ Springer

926

J.Qinetal.

— A match occurs through keystroke c. Because §; >
8, (n,81,w1) = (noc, 8], o)), and (n, 8, wh) —
(noc,8), o)), where §] = 81, o] = 0,8, = &, and
), = 0. The new states are both on n o ¢, and satisfy that
] > 0,0, >0,8] =8, and §] — &) > | —).

— A deletion is applied on the query string. When 61 + 1 <
7, (n,81,w1) = (n,8), o)), where §; = 8 + 1, and
a)’l = w; + 1. Because §; > 87, 8 + 1 < 1. Therefore,
(n,8,w2) — (n,8), o)), where 8, = 8, + 1, and
a)’2 = wy + 1. The new states are both on 7, and satisfy
that 0| > 0,), > 0, 8] > &), and 8] — &) > | — w).

— p € [1..7] deletions are applied on the data string and
then a match occurs through keystroke c. When §; +
max(0, p—wy) < 7,(n, 81, w1) - (nodoc,8,),
where d consists of p #'s, 8/1 = 81 + max(0, p — wy),
and 0] = 0. Because w; > 0, w, > 0, §; > &, and
81— 382 > w1 — wy, we have 61 +max(0, p —wy) — (62 +
max(0, p — w»)) =

3 —8 =0,

81 =8+ p—w >0,
51— —pt+w =0,
§1—86 —w+wy >0,

when p < w; and p < wy;
when p > wy and p < w»;
when p < wy and p > wy;

when p > wy and p > w>.

Therefore, §; + max (0, p —w1) > 62 +max(0, p —w»).
Because §; +max (0, p—w1) < 7,8 +max(0, p—wy) <
7. Therefore, (n, 82, w2) — (nodoc,§), o)), where
8% = 8 + max(0, p — wy), and) = 0. The new states
are both on n o d o ¢, and satisfy that 0] > 0, @} > 0,
8} = 85, and 8] — &) > | —).

O

Since the lemma gives a necessary and sufficient condition
of active state dominance for nonnegative w values, we may
easily check dominance relationship using the conditions in
the lemma and guarantee that no active state is dominated
by another when calling Line 20 in Algorithm 3. Hence we
have a salient property for the INcNGTrie+ algorithm:

Corollary 1 By the IncNGTrie+ algorithm, the set of active
states resident on every node n is minimal when the propa-
gation is finished for any keystroke.

Proof Givenanactive state (n, §, w), we can convertittoa2-
dimensional point (8, § — w). The dominance relationship of
active states in Lemma 3 is then converted to the dominance
relationship of points: (§1, §; — @) dominates (82, §» — w2),
if and only if §; < 8§, and 6 — w1 < 82 — wy. For the
group of points such that §; = §, and 61 — w1 = & —
w3, the INcNGTrie+ algorithm keeps at most one of them.
Therefore, the IncNGTrie+ algorithm finds the skyline [8]
points among all the points converted from the active states

@ Springer

Table2 Active states for ¢ = tas using INcNGTrie+

Key 0 t a s

Active states (1,0,0)

formed by matching a query string’s variant and the string
from the root to n. Since the skyline is a minimal set of points
such that all the other points are dominated, the set of active
states is minimal for node n. O

Example 5 Recall Example 3. Table 2 shows the active states
for each keystroke using the IncNGTrie+ algorithm. Com-
pared to the INcNGTrie algorithm, the total number of active
states is reduced from 13 to 5.

Since dominance check is invoked multiple times in the
IncNGTrie+ algorithm, we briefly discuss how to implement
it efficiently. Because § is in the range of [0..t] and w
never exceeds § (otherwise the trailing deletions will result
in greater §), there are at most (t + 1)(t + 2)/2 possible
(including dominated) active states for a node n. Since t is a
small number in most applications, we may offline compute
the skyline for every possible combination of active states out
of the 27+D(T+2)/2 possibilities, and store them for online
query processing. In doing so, we do not physically remove
any state in A’ but record all the propagated states for each
node in a bit array of (t + 1)(t + 2)/2 bits, and then use the
stored information to find the skyline states.

Another optimization is to collapse the nodes whose
incoming edges are #, because there is plenty of index access
for patterns like #a, ##a, etc. (Lines 10 —18, Algorithm 3)
in the INcNGTrie+ algorithm. We may encode #a (and ##a,
etc.) using a single character. Then for each node n whose
incoming edge label is #, we may directly connect its par-
ents and its children through an edge and remove n from the
trie. For example, in Fig. 1, nodes 1 and 18 are connected
through an edge #e, which is encoded by a single character,
and then node 17 is removed. In doing so, the index access
for descendants through edge label # is reduced. For ease
of exposition, we still show the nodes whose incoming edge
labels are # in the trie in the rest of the paper. They can be
regarded as virtual nodes.

We analyze the worst-case time complexity of the Inc-
NGTrie+ algorithm per keystroke. The time complexity of
propagating an active state is O (max(1, Tt —4§)),6 € [0..t].
The number of active states with incoordination equal to § is
O(tl|q|®). The time complexity of the INcNGTrie+ algorithm
is thus O(t|q|").

Efficient query autocompletion with edit distance-based error tolerance

927

4 Fetching query results

We return as results the strings stored on the nodes reach-
able from the active states (with cursor equal to |g| + 1 for
IncNGTrie). One may notice that due to neighborhood gener-
ation, duplicates may existin these string IDs. It is noteworthy
to mention that duplicate results also exist for direct trie-
based methods; For example, an active node is an ancestor of
another and subsumes the string IDs under the latter, but most
of the previous works did not discuss the removal of them.
In this section, we investigate how to efficiently eliminate
duplicates in the results of error-tolerant query autocom-
pletion for neighborhood generation-based algorithms, and
introduce the detailed result fetching phase.

The duplicates come from three sources. We use the exam-
ple in Fig. 1 to illustrate them:

— Case 1 The string IDs reachable from a node contain
duplicates. For example, in Fig. 1, node 3 has five leaf
descendants, yet they report only two results 51 and s».
These duplicates are caused by neighborhood generation
on the data strings. The path from anode to its leaf descen-
dants may differ due to the existence of deletions, but
reach the same strings eventually.

— Case 2 The nodes of two active states are of ancestor—
descendant relationship. For example, node 3 is an
ancestor of node 7, thereby subsuming the results from
the latter. They are caused by neighborhood generation
on the query string. Two variants match a path and its
prefix in the trie, respectively.

— Case 3 The nodes of two active states are not of ancestor—
descendant relationship but still share common string
IDs. For example, nodes 4 and 19 reach the same result
s1. They are caused by neighborhood generation on both
the query and the data strings, which makes them share
more than one variants.

Next we present our method to respectively deal with the
three cases of duplicates.

4.1 Eliminating case 1 duplicates

To report all the distinct string IDs under a node, one feasi-
ble solution is to store in an array the string IDs linked to the
end of paths in the trie, and equip each node with two point-
ers marking the range in the array containing the underlying
string IDs (we call it result-fetching range). For example,
consider the trie in Fig. 1 and the corresponding string ID
array (denoted by B) in Fig. 2. The result fetching range of
node 7 is [3, 4]. Hence the results from node 7 consist of
the string IDs in B[3, 4]. The problem is then equivalent to
a colored range listing problem [51] which returns distinct
elements in an array. It can be solved in O (1) time per dis-

3 4 5 6 7 8 9 10

String ID: ’Sllsl|S2|82|81|82|81|82|51ISQ‘

Position: 1 2

Fig.2 String ID array for the trie in Fig. 1

tinct string, consuming O (| B| log | B]) bits, besides the string
ID array and the result-fetching ranges. Next we propose a
solution specific to our problem which needs no additional
space but still reports each distinct string in O (1) time.

Since Case 1 duplicates are caused by the existence of
deletions in the paths from a node to its descendants, we
observe the following facts:

— A node n and its child through # report the same results,
except for the string IDs directly attached to n 2, e.g.,
both node 3 and node 10 in Fig. 1 reaching s; and s,.

— If anode has no # in the paths to its descendants, there is
no duplicate in its result-fetching range, e.g., node 17 in
Fig. I.

Based on the above observations, the results for a node
can be found as follows: We repeat the process of report-
ing the string IDs directly attached to a node and going
through # to its descendants until no # can be found, and then
report the string IDs in the result-fetching range of the cur-
rent descendant. The pseudo-code of the algorithm is shown
in Algorithm 4, which guarantees no duplicates fetched for
a given node n.

Proof (Correctness of Algorithm 4) Suppose the input node
of Algorithm 4 is ny, and there is a path ny, ..., nx through
label # in the trie, where there is no outgoing # from ny. Algo-
rithm 4 follows this path and outputs the following string IDs:
(1) those directly attached to ny, ..., ny—; and (2) those in
the reporting fetching range of ng. Let R; denote the multiset
of string IDs fetched from node n; by Algorithm 4. To prove
the correctness, we show that (1) there is no duplicates in any
Ri,1<i<kiand Q) R, NR; =0,ifi # j.

We first prove (1). For R;, i < k, because there is only
one path from the root to any n; in the trie, two deletion-
marked variants of a string cannot both match (# must match
in the trie) the path. Therefore, there is no duplicates in the
string IDs directly attached to n;. For Ry, because there is
no outgoing # from ng, by the definition of deletion neigh-
borhood, there is no # in the subtree rooted at nj (i.e., we
have encountered t #’s from the root to ny). Therefore, any
two paths from n; reach different strings, and thus there is
no duplicates in n’s result-fetching range.

We then prove (2). By the definition of deletion neighbor-
hood, the strings directly attached to n; are the strings ending
atn; (i < k), and the strings in the report fetching range of

2 This exception happens when 7 is the end of a data string.

@ Springer

928

J.Qinetal.

Algorithm 4: GetStrings (n)

Input
Output
R <« 0,
do
R < R U string IDs directly attached to n;
if n has a child n’ through label # then
‘ n<n';
else
L break;

:n is a node.
: The string IDs under n without duplicates.

N R W N =

8 while true;

9 [i, j] < n’s result-fetching range;
10 R < RUBI, jl;

11 return R

Fig. 3 Index of IncNGTrie (s; = baa, s; = bab, s3 = bba, sq4 =
b,r=1)

ng are at least as long as the path from the root to ng. If i # j,
R; and R; are different in lengths, and thus R; " R; = ¥. O

Example 6 Consider node 8 in Fig. 3. To fetch its underlying
results, we first report its attached string s4. Then we go
through # to node 9, which has no outgoing #. We report the
strings in node 9’s result-fetching range [6, 8]: 51, 53, and s7.
No duplicate occurs.

Algorithm 4 still needs to go through a number of #’s.
It can be done in a more efficient way. Consider a node n
and its descendants ny, ..., ng, n’ via #, such that n” has no
outgoing #. We may update the result-fetching range of n by
copying from n’ and then including the ranges for the strings
directly attached to n, ny, ..., ng. Then the string IDs can
be accessed directly from n’s result-fetching range without
producing any duplicates.

Example 7 Consider Example 6. We update the result fetch-
ing range of node 8 by copying from node 9, which is [6, 8],
and then including the range of its attached strings, which is
[5, 5]. The new result-fetching range of node 8 is [5, 8].

4.2 Eliminating case 2 duplicates
For ease of exposition, we call a node in the trie a reporting

node, if it is in an active state (with cursor equal to |g| + 1
for IncNGTrie), and none of its ancestors is in an active state

@ Springer

(with cursor equal to |g| 4 1 for IncNGTrie). In other words,
reporting nodes are those whose underlying string IDs are
not subsumed by others among the nodes that we use to fetch
results. Case 2 duplicates can be avoided by processing only
reporting nodes. To check whether a node n is a reporting
node, one solution is to assign additional codes (e.g., the
region codes widely used in XML query processing [74])
to trie nodes and test the ancestor—descendant relationship
between n and every other node in the active state set A. This
method needs at most |A| — 1 ancestor—descendant relation-
ship tests per node. Another solution is to maintain the nodes
in the active states in a hash table, and test if none of n’s
ancestors is in the table. Due to the edit distance constraint,
only its ancestors on level |¢| — T or below need to be tested,
thus taking at most 2t hash table lookup per node. Rather
than choose these methods, we propose a method that runs in
O (log | N,]) per node check by exploiting the order in which
active states are arranged. N, denotes the set of reporting
nodes and its size is usually very small.

When propagating active states, we organize them in the
order of node numbers in pre-order traversal (see Fig. 1 for an
example). This asserts that a node n’s ancestor must appear
before n when they are accessed. Accordingly, a reporting
node verification algorithm can be devised: The nodes in
the active states are processed one by one. A binary search
tree (BST) is utilized to keep reporting nodes based on their
numbers in pre-order traversal. To verify a reporting node n,
we search the BST for the node whose number is smaller and
closest to n. If the returned node is an ancestor of n, n is not
a reporting node; otherwise n is a reporting node and will be
added to the BST.

Algorithm 5 presents the pseudo-code testing if a node n;
is a reporting node. We abuse n; to denote its node number
in pre-order traversal. The algorithm begins with a search in
the BST for the node whose number is just no more than ;.
If it returns n;, n; has been processed and thus is skipped.
Otherwise, the returned node 7 is checked for ancestor—
descendant relationship with ;. The node numbers of 7 ;’s
descendants are in the range from 7 ; +1 to ng — 1, where ny, is
n;’s next sibling 3 If n; is within this range, n j 1s an ancestor
of n; and the algorithm returns false. Otherwise, n; is areport-
ing node and is inserted into the BST. The search operation in
the BST runs in O (log |N,|) time. The ancestor—descendant
check runs in O (1) time. The overall time complexity of the
algorithm is O (log | N,|).

Proof (Correctness of Algorithm 5) We prove by contradic-
tion. We assume n, the node returned from the BST, is not
an ancestor of n;, but there exists another reporting node n’/
which is n;’s ancestor. According to the order in which we

3 Incasen j is the last child, we recursively go up the tree until reaching
an ancestor such that it has a next sibling, and then use the next sibling
as ng.

Efficient query autocompletion with edit distance-based error tolerance

929

Algorithm 5: CheckReportingNode (n;, 7,)
Input

: n; is anode in an active state. 7 is a binary search tree
maintaining the reporting nodes seen so far.

: true, if n; is a reporting node and appears for the first
time; or false, otherwise.

nj < Ty.search(n;) ;

if ni=mnj then
L return false

Output

-

/* nj<n; */

W

ng < n;’s next sibling;
ifn; +1<n;andn; — 1 > n; then
| return false
else
T,.insert(n;);
L return true

e ® 9 v R

arrange active states, n; must be accessed before n; and thus

/
j .

satisfiesny —1 > n; > nj.Therefore,n’i—l—l <nj <n—I,

meaning that n’J is an ancestor of n ;. It contradicts that n is

a reporting node. Hence the correctness of the algorithm is

proved. O

n’. < nj < n;.Because n’j is n;’s ancestor, its next sibling 7

Example 8 Consider the trie in Fig. 1 and a query string
te. Suppose we use the INcNGTrie algorithm. The active
states with cursors equal to |g| + 1 are (2,3, 1), (3,3,0),
(10,3,1),(12,3,1),and (18, 3, 1) in the node order. First,
node 2 is a reporting node and inserted to the BST. For nodes
3, 10, and 12, the search in the BST returns 2 and it is an
ancestor of them. So they are not reporting nodes. For node
18, since node 2 in the BST is not an ancestor of 18, 18 is a
reporting node and inserted to the BST. Finally, nodes 2 and
18 are returned as reporting nodes.

4.3 Eliminating case 3 duplicates

To handle Case 3 duplicates, we use a hash table to record the
string IDs to be returned as results. Since a result string can
appear under at most |N,| reporting nodes, the worst-case
time complexity of reporting all the results is O(|R||N;,|),
where R denotes the set of result strings.

5 Processing top-k queries

In this section, we introduce the extension of our algorithms
to support top-k queries of error-tolerant query autocomple-
tion.

To define the ranking function, we choose the same
method as in [17] by combining the static score and string
similarity in a monotonic fashion. We assume that each data
string s is assigned with an application specified static score,
denoted by sscore(s). For example, in a dictionary of product
names, a static score may reflect the popularity of a product.

We focus on the following ranking function that gives an
overall score of a data string s with respect to the query ¢,
but our method can be extended to support other monotonic
functions such as a linear combination of the two compo-
nents.

F(s,q) = sscore(s) - sim(s, q). (1)

sim(s, g) denotes the similarity between s and ¢. It is
defined as max{ 1 — % | s' < s5};i.e., we pick the prefix
of s which has the smallest edit distance to ¢, normalize the
distance by the length of g, and then convert the distance
measure to a similarity measure. The data strings are ranked
by F (s, q), and the highest & results are returned. Threshold
semantics is optional to enforce that the results are similar to

the query, as adopted in [16,44].
5.1 Indexing and searching

We assume that the threshold semantics is not involved. In
the absence of the threshold, we may build the index by enu-
merating the y-variant family of data strings, where y is used
to control the number of deletions. In the searching phase, we
use either INCNGTrie or IncNGTrie+ to compute active states,
and switch to edit distance computation (see Sect. 6.1 for the
correctness of this switch), as do direct trie-based methods,
when the yth # in a path is seen. Because incoordinations
may vary from 0 to |¢g| when the threshold is not given, the
number of active states may be huge when the query becomes
long. To remedy this, we may generate only a small set of
promising active states while the others are guaranteed not to
produce top-k results. For ease of exposition, we introduce
the result-fetching algorithm first and then elaborate on this
optimization.

5.2 Result fetching

The basic framework of result fetching is to obtain the strings
under the node in each active state as well as their static
scores. The similarity can be computed using the incoordi-
nation of the active state. Hence the F (s, ¢g) score is obtained
and we update the top-k results encountered so far (called
temporary results). However, it is inefficient to fetch all the
strings for all the active states and then sort them by the rank-
ing function due to the potentially huge number of underlying
strings. A direct trie-based method was proposed in [17] by
precomputing the top-k data strings by static score for each
node of the trie. Although the method can be extended to Inc-
NGTrie or IncNGTrie+, we do not choose to return results in
this way because it imposes considerable space overhead and
only supports a static k. Our solution is based on two early
termination techniques and one initialization technique. Next
we choose the IncNGTrie+ algorithm to describe the tech-

@ Springer

930

J.Qinetal.

niques, and they can be applied to the IncNGTrie algorithm
as well.

5.2.1 Early termination

The first early termination technique is to reduce the number
of active states for result fetching. To this end, for each node
n we store the maximum static score of its underlying strings,
denoted by max_sscore(n). Given an active state (n, §, w),
the maximum F'(s, g) of its underlying strings is

)
Fmax(n, q) = max_sscore(n) - (1 — ﬂ) .
q

With this upper bound, we can organize the active states
in the order of Fuax(n, ¢), and break tie by the order of
node number in pre-order traversal for the sake of duplicate
removal (will be discussed later). We scan active states in this
order, fetch string IDs as well as static scores, and update the
temporary top-k results. When the Fpx (7, g) value of the
next active state is no higher than the F(s, g) value of the
kth temporary result, the process can be stopped, and we
return the current top-k as the final results.

Duplicate removal can be applied to improve efficiency.
We can use the techniques proposed in Sect. 4, but a modifi-
cation is necessary to remove Case 2 duplicates. Given two
active states (n, 8, w) and (n’, 8, w) where n is an ancestor
of n’, unlike the non-top-k case in Sect. 4, we cannot simply
skip the result fetching of n’. Although the underlying string
IDs of n’ are subsumed by those of n, they may achieve higher
overall score when 8’ < §. Hence we modify the definition
of a reporting node for top-k queries: A node is a report-
ing node, if it is in an active state, and none of its ancestors
is in an active state with a smaller or equal incoordination.
Because max_sscore(n’) < max_sscore(n), and the active
states are sorted by decreasing Fmax(n, ¢) and increasing
node number, {n’, §', @) is processed prior to (n, §, w) only
if 8’ < §. With this property, we can verify a reporting node n
by comparing n and § only with the reporting nodes that have
been processed. This can be done with an interval tree. For
each reporting node n’ that has been seen, we take as key the
node number range of its descendants, i.e., [n’ + 1, n” — 1]
(n” is the next sibling of n’), and as value the correspond-
ing incoordination. It takes O (log | N, | + occ) time to check
whether 7 is in any range with a no larger incoordination.

Example 9 Consider the example in Fig. 3. Suppose the static
scores of s1 to s4 are 0.5, 0.8, 0.4, and 0.2, respectively.
Suppose k = 2, the query length is 4, and we have five
active states: (12,2,2), (13,2,1), (14,1,0), (15,1,1),
and (18,1,0). The max_sscore(n) values of their nodes
are 0.8, 0.8, 0.5, 0.8, and 0.4, respectively. The Fpax(n, ¢)
values are 0.4, 0.4, 0.375, 0.6, and 0.3, respectively. So we

@ Springer

Fig.4 Sorted trie

process them in this order: (15,1, 1), (12,2,2),(13,2,1),
(14,1,1),and (18,1,0).

— (15,1, 1):Node 15is areporting node and we get the first
temporary result s, whose F (s, g) = 0.6. Since node 15
has no descendants, no operation is done to the interval
tree.

— (12,2, 1): Node 12 is a reporting node and we get the
second temporary result s; whose F (s, g) = 0.25. Then
the key-value pair ([13, 15], 2) isinserted into the interval
tree.

— (13,2, 1): Node 13 is not a reporting node because it is
in the indexed range [13, 15] and the incoordination is
equal to the indexed value.

— (14,1, 1): Although node 14 is in the indexed range
[13, 15], it has a smaller incoordination, and thus it is
a reporting node. We update the second temporary result
s1 whose F (s, g) becomes 0.375. No operation is done
to the interval tree due to the absence of descendants.

— (18,1,0): Its Fax(n,q) = 0.3, less than the lowest
temporary result 0.375. We stop the process and return
s> and s1 as top-2 results.

The second early termination technique is to reduce the
number of string IDs accessed for each node in an active
state. In Sect. 4, each node is equipped with a result fetching
range, and we access the string IDs in the range one by one.
If the entries in the string ID array are sorted, we will be able
to early terminate the access in the range. Based on this idea,
we sort siblings in the trie by decreasing max_sscore(n),
and the entries in the string ID array are sorted accordingly.
If an internal node has directly attached string IDs, they are
regarded as a special child and also involved in the sorting.
As aresult, the first entry in the result-fetching range has the
maximum static score and hence maximum F (s, ¢g) among
all the underlying strings of a node (because the similarity is
specified by the incoordination of an active state and fixed
throughout the result-fetching range). Consider Example 9.
Figure 4 shows the trie after sorting.

The next step is for each entry B[i] in the string ID array,
we use a pointer linking it to B[], such that j is the smallest
value j > i and sscore(B[j]) > sscore(Bl[i]) (i.e., it is

Efficient query autocompletion with edit distance-based error tolerance

931

Pos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID:’82|81|S3|84|52|81|83|52|81|83|81|83|53|S4‘
T =

Fig. 5 String ID array with links. An arrow represents the link to the

next entry with a higher static score. Entries without outgoing links
shown are linked to null

linked to the next entry which has a higher static score); or
null if there is no such B[j]. In consequence, we can fetch
results for a node n as follows: We scan the entries in the
range and update the temporary top-k results. Whenever the
kth temporary result is updated or a string with a lower static
score than the kth temporary result is seen, we use the link to
quickly find the next entry with a higher static score. If the
link points to null or goes beyond the range, the process can be
early terminated, because it is guaranteed that no subsequent
strings in the range are better than the kth temporary result.
Assuming the maximum string length in S is |s|, there are
at most (k + W) entries to be accessed in a
result fetching range.

Example 10 Figure 5 shows the string ID array with links
for the example in Fig. 4. Suppose the temporary results
are empty and we are going to fetch results for active state
(2,2,0). The result-fetching range of node 2 is [1, 4]. 52 is
fetched and become the first temporary result with an F (s, q)
of 0.4. Then s is fetched and become the second temporary
result with an F (s, g) of 0.25. Since the second temporary
result is updated, we follow the link and go to B[5]. It is
beyond the result-fetching range and hence we stop.

There are two optimizations on sorting: Due to the dupli-
cate removal for Case 1 duplicates, if anode n has an outgoing
#, we only need to order at most two of its children: the one
with the label # and the special child for directly attached
string IDs, because the underlying strings of the other chil-
dren are not in n’s result-fetching range, hence bearing no
effect when we are going to fetch the strings under n. In addi-
tion, it is not necessary to physically sort the trie. Instead, we
can sort the string ID array only and update the result-fetching
ranges of the trie nodes.

5.2.2 Initialization

The early termination can be sped up if we find a good
set of initial temporary results. Since active states are
sorted by Fpax (7, ¢) and siblings are (virtually) sorted by
max_sscore(n) in the trie, the two orders can be exploited
for this purpose. We pick top-k active states with distinct
max_sscore(n), and take the first entries in their result-
fetching ranges as top-k initial results. Despite the existence
of duplicates in the string ID array, the distinctness of

Algorithm 6: FetchTopK (¢, A, B, k)

Input : ¢ is a query string; A is an ordered set of active states;
B is a string ID array; k is the number of results to be
reported.

Qutput : A set of strings ranked by F (s, q).

1 R < InitializeTopK (¢, A, B, k);
2T <0 /* T; 1is an interval tree */
3 foreach (n,5,w) € Ado

4 | if Finax(n, @) < F(R[k], q) then

5

L break ; /* early terminate */
6 [< true;
7 foreach ([i, j],8’) € T; suchthatn € [i, j] do
s if § > §' then
9 f <« false ; /* not reporting node */
10 break;
11 if f = true then
12 Ti.insert({[n + 1, n’s next sibling — 1], §));
13 [i, j] < n’s result-fetching range;
14 | R < GetStringsTopK (g, B, k, [i, j]);
15 return R

Algorithm 7: GetStringsTopK (g, B, &, [i, j])
Input

: g is a query string; B is a string ID array; k is the
number of results to be reported; [i, j]is a
result-fetching range.

Output : A set of temporary results in B[i, j].

1p<1i;

2 while p < jand p # null do

3 if F(B[pl,q) > F(R[k], q) then

4 L R.add(B[p]); /* update temporary results

*/
s | if F(B[pl,q) < F(RIk], q) then
6 ‘ p < B[pl.next ; /* jump with link */
7 else
8 | p<p+1
9 return R

max_sscore(n) guarantees that top-k initial results can be
found.

By integrating the two early termination techniques and
the initialization technique, a result-fetching algorithm for
top-k queries is devised (pseudo-code shown in Algorithm 6).
Given a set of active states, a set of temporary results is ini-
tialized (Line 1). Then for each active state, it checks if its
node is a reporting node (Lines 6 —10). If so, its result fetch-
ing range and incoordination are inserted into the interval tree
(Line 12), and its underlying strings are fetched to update the
temporary results (Line 14, details shown in Algorithm 7).
The above process terminates once the next active state can-
not yield a better one than the kth temporary result (Line 4),
and then the top-k results are returned.

@ Springer

932

J.Qinetal.

5.3 Searching revisited

Finally, we introduce the aforementioned optimization tech-
nique in the searching phase to reduce active states. The
basic idea is to “hibernate” the active states that cannot pro-
duce top-k results for the current query, and “awake” them
only when the next few keystrokes come, and these active
states become necessary to compute top-k. The initializa-
tion of temporary results is leveraged for this purpose. If the
Fmax (n, g) value of an active state is lower than the F (s, q)
value of the kth initial temporary result, we can make sure that
the active state cannot produce a top-k result of the current
query, and thus it is turned into hibernation. When the next
keystroke comes, we check whether to awake it by exploiting
this observation: For all the active states (n’, §’, ') propa-
gated from (n, 8, w), max_sscore(n’) < max_sscore(n)
and & > §. This means that Fp,x(n, g) monotonically
decreases with the active state propagation. On the basis of
this property, we compute the Finax (1, g) value of a hibernat-
ing active state with respect to the current query length. The
state is awaken if its Fiax (11, ¢) is higher than the F (s, q)
value of the current kth initial temporary result, and then
propagated using the keystrokes that have been input since
its hibernation. Otherwise, it is guaranteed that none of the
active states propagated from the state can produce a top-k
result for the query, and thus the hibernation remains.

6 Index size optimizations

Algorithms based on neighborhood generation, including our
algorithms, often deliver large index size due to the enu-
meration of variants. In this section, we introduce three new
techniques specific to our algorithms to remove redundancy
in the index. We note that there are other physical compres-
sion methods such as double-array trie [2] that can be applied
to our method only, because direct trie-based methods require
traversing all child nodes in active node propagation, which
is an expensive operation for a double-array trie.

6.1 Data string merge

The first technique to reduce index size can be regarded as a
hybrid of neighborhood generation and edit distance compu-
tation. We show the basic idea with an illustrative example.

Example 11 Consider node 4 in Fig. 1. All of its descendant
paths reach the same string s1, meaning that these paths are
variants of s; only. If node 4 is in an active state, we may
directly compute the remaining part of the query string and
s1 for edit distance, and accumulate it to the current incoor-
dination. Since the neighborhood generation is not needed

@ Springer

here, only the path from node 4 that contains no deletions
needs to be kept for edit distance computation.

The example suggests for any node n, we may disable
neighborhood generation in the subtree rooted at n to save
the space. When n appears in an active state, the searching
algorithm switches to the edit distance computation mode for
the following keystrokes of the query (invoked in Line 8 of
Algorithm 1 or Line 10 of Algorithm 3). It computes the edit
distance between the subsequent inputs and the remaining
paths, as do the direct trie-based methods. The incoordination
encountered before reaching n is added to the result of edit
distance computation to obtain an overall incoordination. The
correctness of the algorithm is proved as follows:

Proof Suppose a path x in the trie is divided into two parts
x1, on which active states are generated by IncNGTrie or
IncNGTrie+, and x, on which edit distance is computed.
To prove the correctness of the algorithm, we need to show
that given a query ¢, there exists (y, Dy) € V(g, T) such
that y = x and |D; U Dy| < 7, if and only if there exist
substrings g1 and g» such that (1) ¢ = g1 o g2, and (2)
there exists (y1, Dy,) € V(q1,) such that x; = y; and
|Dx1 U D)71| + ed(x2, Q) <T.

We first prove the sufficiency. Assume there exist sub-
strings g1 and ¢» that satisfy the above two conditions.
Because ed(x2,q2) < 1T — |Dy, UDy|, by Lemma 1,
A(y2, Dy,) € V(q2, T — |Dy, U Dy,|), such that x = y>
and |Dy, U Dy,| < © — |Dy, U Dy, |. By concatenating y;
and y; as y, we have a (y, D) € V(q,7) such that x = y
and |Dx U Dy| < |Dy, U Dy, | + |Dy, U Dy,| < 7.

Then we prove the necessity. Assume there exists (y, Dy) €
V(g, t) such that y = x and |Dx U D,| < 7. We divide Dy
into two subsets Dy, which consists of the deletions occur
before x;, and D,,, which consists of the other deletions.
Then we divide y into two substrings y;, which is the same
as x1, and y», which is the remaining part. Because y = x and
y1 = X1, y» = x2. To divide Dy into corresponding deletion
lists Dy, and Dy,, we do in the same way as we divide D,. If
there exist multiple (y, Dy)’s, we pick the one which yields
the smallest |Dy, U Dy, |. In doing so, we have g; and ¢
such that ¢ = g1 0 g2, {(y1, Dy,) € V(q1, 7) and (y2, Dy,) €
V(q2, 7). In addition, Dy, N Dy, = ¥ and D,, N Dy, = ¥.
Hence we have |Dy, U Dy, | + |Dy, U Dy,| = |Dy U Dy]|.
Because |Dy, U Dy,| = |Dx U Dy| — |Dy, UDy,| < T —
|Dy, U Dy, |, by Lemma 1, ed(x2,g2) < T — |Dx, U Dy,|.
Therefore, we have g; and g such that ¢ = ¢q; o g2,
(1, Dy;) € V(q1, 1), (y2, Dy,) € V(q2,7), x1 = y1, and
Dy, U Dy, | +ed(x2,q2) < 7.]

We use this index reduction technique, called data string
merge, in two ways. First, we merge the subtrees whose nodes
reach the same single string ID. This is to guarantee that for
each of these subtrees, there is only one path to compute edit

Efficient query autocompletion with edit distance-based error tolerance

933

distance after the merge. So our algorithms are still insensi-
tive to the alphabet size. Second, since the number of variants
of a data string is |s|%, long strings may bring about con-
siderable performance issues in the indexing construction.
We truncate data strings at a length of /,,, and only use the
truncated prefix to generate variants. Hence the number of
variants of a data string is at most |/,,|*. Edit distance compu-
tation is invoked for the remaining length when the query’s
and the data string’s lengths exceed /,,.

6.2 Common subtree merge

The second technique is based on the observation that if the
two subtrees rooted at two nodes are isomorphic to each other
(we treat string IDs as labels), we can merge these two sub-
trees into one. An example is the subtrees rooted at node
12 and node 18 in Fig. 1, respectively. This is reminiscent
of the minimization of automata [1], and the most efficient
solution [19] is to traverse the trie while converting the sub-
tree under each node into a hash code. Common subtrees are
identified through hash table lookup and merged. The total
time complexity is O(|T).

There is a subtle instance in merging common subtrees.
Two common subtrees are literally identical single paths but
(1) one is produced by common data string merge (e.g., the
one formed by merging the paths under node 4 in Fig. 1),
while (2) the other is not (e.g., the path under node 13 in
Fig. 1). Our solution is not to distinguish the two types of
subtrees but treat both of them as the first type. Then the
two paths can be merged, and we switch to edit distance
computation no matter what types they are. It can be shown
that a second type subtree, being a single path, either contains
only one node or there are t #’s on the path from the root to
the subtree. Thus, the efficiency of the algorithm will not be
impaired in this case even though the active state propagation
(Algorithm 2) is replaced by an edit distance computation.

Example 12 Figure 6 shows the trie in Fig. 1 after common
data string merge and common subtree merge. For example,
since all the paths from node 4 reach s1, we merge them into
a single path and mark node 4 as where we start edit distance
computation. Node 7 is processed similarly. The subtrees
under nodes 12 and 18 are identical, with incoming edges #
and e, respectively. We pick either subtree to remove, say the
one rooted at node 12, and then divert the incoming edge to
node 18. The subtrees rooted at nodes 19 and 21 are removed
likewise because they are identical to those rooted at nodes
4 and 7, respectively.

Due to the redundancy caused by neighborhood genera-
tion, which produces a number of similar strings, merging
common subtrees may achieve remarkable reduction rate on
index size. Apart from the index size reduction that can be
applied to any tries, what is specific to our algorithms is

Fig. 6 Index with common data string merge and common subtree
merge. Gray nodes indicate edit distance computation is invoked for
descending paths. New edges formed by common subtree merge are
colored in red

that merging common subtrees facilitates the query process-
ing performance because the number of active states can be
reduced as well. We formally state the property that leads to
the optimization on query processing:

Lemma4 Consider two nodes ny and ny which share com-
mon subtrees rooted at them. For the IncNGTrie algorithm,
given two active states in the same cursor (ny,u,d) and
(no,u,8), if§ <8, (ny,u,8) can be discarded from the
active state set. For the IncNGTrie+ algorithm, give two active
states (ny,8,w) and {ny, 8, "), if (n1,8, ') is domi-
nated by (ny,8,w), {ny,8', @) can be discarded from the
active state set.

Proof As the subtrees rooted at n1 and n, are the same, the
two active states share the same string IDs as results. For the
IncNGTrie algorithm, the results reachable from any future
active states propagated from (n, u, 8’) will be subsumed
by those propagated from (np, u, §), because they read in
the same keystroke and § < §’, which implies a more margin
of incoordination. The correctness of the algorithm holds
in spite of (ny, u, 8") being discarded from the active state
set. For the INncNGTrie+ algorithm, the results reachable from
any future active states propagated from (n, 8§, ') will be
subsumed by those propagated from (ny, §, w). Therefore,
(ny, 8, @) can be safely discarded. O

7 Discussions
7.1 Deletion of characters in query

As the number of active states is small (< 100 for Inc-
NGTrie+, which will be reported in Sect. 8.2.2), we can
cache the set of active states for every keystroke. When
the user deletes a character, we roll back to the previous
active state set. This is straightforward and only incurs tiny
amount of memory consumption. For direct trie-based meth-

@ Springer

934

J.Qinetal.

ods, caching active states for every keystroke consumes much
more memory due to the large number of active nodes.

7.2 Updates in data strings

Updates may occur in data strings by inserting, deleting, or
modifying a string. We discuss how to update the index when
a data string is inserted or deleted. The case of modifying a
string can be handled by first deleting it and then inserting a
new one.

Insertion We use an auxiliary index to keep a trie built on the
variants of new strings, with no index reduction technique
applied on it. Whenever a data string is inserted, its deletion-
marked t-variant family is generated and inserted into the
auxiliary index, and its ID is inserted into the string ID array
of the auxiliary index. The auxiliary index is merged with
the main index through an offline logarithmic merging [48],
which is also adopted by many information retrieval solu-
tions. We can also periodically reconstruct the index from
scratch. Similar strategies have been adopted by most search
engines to handle updates in their indexes.

Deletion If a data string in the main index is deleted, we do
not modify the index but record its string ID in a table so that
it will not be returned for future queries. If a data string in
the auxiliary index is deleted, the variants of the string are
removed from the trie, and its entries in the string ID array
are removed as well. In case multiple strings can produce the
same variants, we fetch the string IDs under the variant and
see if there is only one result. If so, the variant can be safely
deleted from the auxiliary index.

8 Experiments
We report experiment results and our analyses.
8.1 Experiment setup

Datasets and Queries We select the following publicly avail-
able datasets.

— DBLP is a dataset of bibliography records in computer
science.*

— UMBC is a collection of English paragraphs with words
processed from Stanford WebBase project.’

— MEDLINE is a set of journal citations and abstracts of
biomedical literature.®

— AOL is a set of query logs from AOL.’

4 http://www.informatik.uni-trier.de/~ley/db/.

3 http://ebiquity.umbc.edu/resource/html/id/351.
© http://mbr.nlm.nih.gov/Download/index.shtml.
7 https://jeffhuang.com/search_query_logs.html.

@ Springer

We tokenize the datasets into terms with white spaces and
punctuation. Then each term is regarded as a data string.
Statistics about the preprocessed datasets are provided in
Table 3. The alphabet sizes are all 26. AOL is only used
for the effectiveness of top-k queries. To study the effect of
alphabet size, we also generate a synthetic dataset of 1 mil-
lion strings with | X'| = 8, 16, 32 and 64. 1000 strings are
randomly sampled from each dataset as queries, and then 0O
to 3 edit operations are applied to each query.

Evaluations and algorithms We summarize the experiments
conducted and the methods compared:

— Opverall (range) query processing performance. We com-
pare the following algorithms: (1) BEVA [77] is a direct
trie-based method that achieves minimum active node
size by eliminating ancestor—descendant relationships
among active nodes. It utilizes an automaton to speed
up active node propagation. Since this is our previous
work, we used the source code directly. (2) META [23]
is a direct trie-based method which generates active
nodes using only matching characters. We received the
source code from the authors of this work. (3) Inc-
NGTrie is our proposed algorithm that indexes in a trie
the deletion-marked variants of data strings and incre-
mentally computes active states during query processing.
(4) IncNGTrie+ is our proposed algorithm that improves
IncNGTrie by reducing the number of active states.

— Searching phase performance. The aforementioned four
algorithms are compared.

— Result-fetching phase performance. We compare the
proposed duplicate removal technique with the dedupli-
cation method using only hash tables. BEVA and META
are also compared.

— Scalability. We vary alphabet size and dataset size, and
compare INcNGTrie(+) with BEVA and META.

— Top-k query processing performance. We first evaluate
the effectiveness of the proposed ranking function. It
is compared to static score ranking and edit distance
ranking. Then we evaluate the optimization techniques
proposed in Sect. 5. Finally, we compare the efficiency
of our top-k query processing algorithm with META.

— Indexing performance. We evaluate the index size reduc-
tion techniques proposed in Sect. 6 and compare the index
size and the construction time with BEVA and META. In
addition, we study the effect of index size reduction on
query processing speed.

For IncNGTrie and IncNGTrie+, we set/,, = 12 to generate
deletion variants only for the length within this value. The
exceeding part is processed by edit distance computation,
as described in Sect. 6.1. Other existing methods for error-
tolerant query autocompletion, such as [17] and [37], are not

http://www.informatik.uni-trier.de/~ley/db/
http://ebiquity.umbc.edu/resource/html/id/351
http://mbr.nlm.nih.gov/Download/index.shtml
https://jeffhuang.com/search_query_logs.html

Efficient query autocompletion with edit distance-based error tolerance

935

Table 3 Dataset statistics

Dataset |S| avg. |s|
DBLP 319,690 8.6
UMBC 2,000,000 9.9
MEDLINE 1,782,517 10.0
AOL 365,274 9.4

compared because they have been shown to be outperformed
by previous studies [23,43,70,77].

The keystroke saving of error-tolerant query autocomple-
tion by edit distance has been demonstrated by [17]. We do
not repeat the experiments here.

Measures We mainly measure the active node/state size and
the query processing time, which consists of the searching
time to maintain active states/nodes and the result-fetching
time to get query results. All the measures are averaged over
1000 queries. For the evaluation of ranking methods, we
measure mean reciprocal rank and success rate, which are
common measures for query autocompletion [4,57,58,69].
Environments All the experiments were carried out on a on
a PC with an AMD Opteron 2.4GHz Processor and 96GB
RAM, running Ubuntu 16.04. All the algorithms were imple-
mented in C++ in a main memory fashion.

8.2 Query processing performance
8.2.1 Overall query response time

We plot the average query response times with varying t in
Fig. 7a—c for a query length of 4 and in Fig. 7d—f for a query
length of 7. The reason for choosing 4 and 7 is that they
are representative lengths of short and long queries, respec-
tively. Since the maximum edit distance threshold is 3 in
our experiments, for any query length no greater than 3, all
the strings in the dataset are results. Hence we choose 4,
a length at which the results become meaningful, for short
queries. A query length of 7 is where the active state num-
bers of direct trie-based methods drop to the same level as
the proposed neighborhood generation methods (as we will
see later). Hence we choose 7 for long queries.

The response time is not accumulated for previous charac-
ters but measured only when the 4-th or the 7-th character is
typed. It is decomposed into searching time (top) and result-
fetching time (bottom). BE, ME, NG, and N+ denote BEVA,
META, IncNGTrie, and IncNGTrie+, respectively. We observe
that IncNGTrie+ has the best response time among the four
in most settings, followed by IncNGTrie, except BEVA is the
fastest (due to its fast result fetching) in a few settings when
the query length is 4. The advantage of InCNGTrie+ is more
substantial when 7 or the query length is large. INcNGTrie+
achieves up to 8 times speedup over IncNGTrie, and more
than 100 times over BEVA and META. The main reason for

the much longer response time of direct trie-based methods
is the lengthy searching time. In the following, we analyze
searching and result-fetching times of the algorithms sepa-
rately. In the interest of space, we only show the results when
t = 3. The results of other t settings are similar.

8.2.2 Searching time

We measure the active state numbers of the four algorithms
on the three datasets when the i th character of the query string
is input to the system, in line with [43]), and show the results
in Fig. 8a—c. We observe that:

— The active state numbers of direct trie-based algorithms
first increase with the query length, peak when the query
length is 4 or 5, and then decrease.

— The active state numbers of neighborhood generation-
based algorithms increase with the query length, but in a
much more gentle manner.

— Although direct trie-based algorithm have smaller active
state numbers when the query length exceeds 10 (because
the query becomes very selective), their maximum active
state numbers en route are still larger than those of neigh-
borhood generation-based algorithms. For example, the
numbers on MEDLINE are close to 10k for BEVA and
META, but 3.6k for IncNGTrie and only 31 for Inc-
NGTrie+.

We also observe the early stage explosion of direct trie-
based methods. BEVA does not compute active states when
lg] < . However, when |g| exceeds 7, its active state num-
ber exhibits a sudden explosion. Although META keeps only
active nodes ending with matching characters, the number of
active nodes is still huge, especially for queries with repeated
characters.

Figure 8d—f shows the searching times of the three algo-
rithms, accumulated from the first input character to the given
query length. IncNGTrie+ is the fastest, followed by Inc-
NGTrie. The performances of BEVA and META are close.
In [23], IncNGTrie was shown to be slower than META on
a small dataset (146k data strings). We also observe this
result on DBLP, where META turns out to be faster than Inc-
NGTrie for long queries. Nonetheless, INCNGTrie performs
better than META on the two larger datasets used in our exper-
iments, and IncNGTrie+ is even faster. Comparing META nd
IncNGTrie+, the fastest direct trie-based and neighborhood
generation-based methods, respectively, the latter is up to an
order of magnitude faster on DBLP, and two orders of mag-
nitude faster on the other two datasets. The speedup is more
remarkable for short queries. This is more important for the
applications featuring autocompletion.

@ Springer

936 J.Qinetal.

=1 =2 =3 =1 =2 =3 =1 =2 =3
1000

Searching Time C——

Searching Time ——
Result Fetching Time Exxxxd

] Searching Time —
Result Fetching Time &xxxxs £

Result Fetching Time Exxzxd

2%

10 100 100
E H B E E & E v
o o BB B o & o B
IS BB e £ i K E i ke
F = B =
ool L REEE B o1y g] 01 1k
0001 LES B KX B g ot L KIRIE &S g i 001 LES KA B] & 2
NG N+ BE ME NG N+ BEME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BEME NG N+ BE ME NG N+ BE ME
(a) DBLP, Query Response Time (b) UMBC, Query Response Time (¢) MEDLINE, Query Response Time
(lal = 4) (lal = 4) (lal = 4)
1=1 =2 =3 =1 =2 =3 =1 =2 1=3
100 Searching Time C—— 100 Searching Time C—— 100 Searching Time T———
10 Result Fetching Time &xxxx3 10 Result Fetching Time xxxxx3 10 Result Fetching Time Xxxxx3
@ @ m
£ £ g
@ o ke o
£ o £ o1 5 £ o1
oor oor 001
0.001 i B e K 0001 LEA B kel B8 B 0.001 , B B
NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME NG N+ BE ME
(d) DBLP, Query Response Time (e) UMBC, Query Response Time (f) MEDLINE, Query Response Time
(lal =7) (lal =7) (lal =17)
Fig.7 Overall query processing performance
100000 l IncNGTrie —»— BEVA ---&-- 1 100000 IncNGTrie —%— BEVA --&-- j 100000 INcNGTrie —%— BEVA --&--
IncNgTrie+ - 0 - META —+— IncNgTrie+ - ©- - META —+— IncNgTrie+ - O - META —+—
:.{’3 10000 B 1 g 10000 /@_..&_\&\ j 3‘1"_: 10000 ; —E
S 1000 ; = 5] T
e W E oo / -] & o0 / .
o 100 / m\‘~g.\§_ _o--4 o 10 / \B\\g o o 100 / &“ﬂ,\s P!
2 ; i 2 oo - Bl 2 o - o T8
53] 10 / o-o"C © g © 10 [o-e-0" o ki k3] 10 / P oo
< 15— { < --° < [o-
183 1 15
0.1
2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
Prefix Length Prefix Length Prefix Length
(a) DBLP, Active State Size (b) UMBC, Active State Size (¢c) MEDLINE, Active State Size
(r=3) (r =3) (r =3)
& 1000 l INcNGTrie —%— BEVA o 1 & 1000 l INcNGTrie —%— BEVA B 1 & 1000 INcNG Trie —%— BEVA o
I 100 IncNgTrie+ - ©- - META —+— £ IncNgTrie+ - ©- - META —+— £ IncNgTrie+ - O - META —+—
= B - B - = 100 gy BB BB — B = 10 U == SN UOUr-- U~ WUR - .|
o 10f P o gl o 4 E
£] 1 £ - 3 £ 10+ B
F : oo ' Eoo
g 01 £ o1 £
2 oot b [o o1
I ; 001 ® :
Q0001 ;] 53 ; D 001
2] Q- @) 0.001g--.. g 1 (%] o----d
0.0001 0.001
2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
Prefix Length Prefix Length Prefix Length
(d) DBLP, Searching Time (e) UMBC, Searching Time (f) MEDLINE, Searching Time
(r=23) (r =3) (r=3)
Fig.8 Searching performance
8.2.3 Result-fetching time Figure 9a—c shows comparison of the string IDs accessed
for respective query length when t = 3. We also show the
We then evaluate the result-fetching performance. We con- results of BEVA and META as well as the number of dis-
sider the following two strategies of IncNGTrie and Inc- tinct result strings (denoted by Results). As can be seen,
NGTrie+ to remove duplicates when fetching results: HashTable strategy accesses a number of string IDs up to tens

of million. When we use Deduplication strategy, the number
of fetched string IDs can be reduced by almost two orders
of magnitude, and is very close to direct trie-based meth-
ods for short queries. Figure 9d—f shows the corresponding
result fetching times. By applying Deduplication, the result

— HashTable (denoted by Algorithm-H in figures). The
algorithm uses a hash table to remove duplicates and
return distinct strings reachable from active states.

— Deduplication (denoted by Algorithm-D in figures). The
algorithm employs the duplicate removal techniques pro-
posed in Sect. 4.

@ Springer

Efficient query autocompletion with edit distance-based error tolerance

937

107 F E— BEVA o [. N BEVA sy 108 Frr N BEVA ooss
! IncNGTrie-D mxxx1 META zzzz 107 F IncNGTrie-D m=zxx1 META zzzz [8 IncNGTrie-D =xxxx1 META zzzzn
6 - IncNGTrie+-H essza Results 7 IncNGTrie+-H exmma Results 7] - IncNGTrie+-H e Results
1 IncNGTrie+D_mmmm 1 10 | IncNGTrie+-D_mmmm B 10 B IncNGTrie+-D_mmmm
» - g » 2 » {
3 10 ‘ﬁ B ;a 10° §‘§ & 10® B :
- N N o 10° W N | L b = W
2o | A HIN | 1 27 FERN ERA Rl 2o A
s A W N = 10t W W 2\ = W by (L
R Rl R vl v & o ||
AN A | RN 10 W W\ N 2\ N KE
N W N W W 2\ W N ;
107 A VAR Y 2 W W N 10° W N :
N VAR 10 W VAl A\ WA N ;
o LERAY [V [HIVY | o LB (BB (RN (i 1o LB VAR
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10
Query Length Query Length Query Length
(a) DBLP, String IDs Accessed (b) UMBC, String IDs Accessed (¢c) MEDLINE, String IDs Accessed
(r =3) (r=3) (r=23)
. . .
IncNGTrie-H C—3 IncNGTrie+-D mmmmm | 4 IncNGTrie-H C——3 IncNGTrie+-D 10 p IncNGTrie-H C—2 IncNGTrie+-D mmmmm
IncNGTrie-D oxxxzl BEVA oxx% 10 FHE IncNGTrie-D xxxx1 BEVA IncNGTrie-D &xxxxl BEVA o5
IncNGTrie+-H ez META zzzZ |4 108 o IncNGTrie+-H S META zzzz 10° IncNGTrie+-H Semms META zzzz1
2 T ; B 107 g
° = 10 H{H : ' ; < o' HER
K3 B
[}) i o | IKEY
£ | £ 10 Y Il VY
= N Lagea N = oot : VY
N N Vi
N 10?2 B N 102 : VY
N K N Y
10 N/l : 10-3 RS N 10-3 NG|
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10
Query Length Query Length Query Length
(d) DBLP, Result Fetching Time (€) UMBC, Result Fetching Time (f) MEDLINE, Result Fetching Time
(r=23) (r=23) (r=3)
n n n n n 3 n n n n n n n n n n
{ [AlgorithmN —©— _Algorthm-0 = X -] 10 RN 6= Agoithmo =X =] 10° T RgommN o= Algorithmo —X]
10'B ~ 1
10? S~ 2% ~
—_ —_ N 1 —~ 1o S~
2] » N » ~
E 1w} E X = .
° o 10'F 2 1 o 10 -
£ £ £ %
oo | [N = S~
10 100 b - 1 100 S
1072 10" = 107! =
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10

Query Length
(g) DBLP, Result Fetching Time
(r=3)

Fig.9 Result-fetching performance

fetching times of INcNGTrie and IncNGTrie+ is reduced from
HashTable by up to almost two orders of magnitude.

Compared to the conference version of this work [70],
we propose a new duplicate removal technique for Case
1 duplicates. To show their difference, we plot the result-
fetching times of the INncNGTrie+ algorithm in Figure 9g—i.
Algorithm-N denotes the algorithm equipped with the new
technique. Algorithm-O denotes the algorithm equipped with
the technique in [70]. The result-fetching times are close for
the two algorithms, but the new technique is always slightly
faster. The reason is that Algorithm-O accesses the entries in
the string ID array using links, while Algorithm-N retrieves
string IDs stored in continuous space.

8.3 Scalability
8.3.1 Varying alphabet size
We study the searching times of the algorithms using the

synthetic dataset with alphabet size varying from 8 to 64.
Figure 10a shows the accumulated searching times when the

Query Length
(h) UMBC, Result Fetching Time
(r=23)

Query Length
(i) MEDLINE, Result Fetching Time
(r=23)

query length reaches 8 at a T of 3. The searching times of
direct trie-based methods rapidly grow with the alphabet size.
On the contrary, the searching times of IncNGTrie and Inc-
NGTrie+ decrease when we move alphabet size toward larger
values, because their active state numbers are insensitive to
the alphabet size, and the query becomes more selective for
larger alphabets. When the alphabet has 8 characters, Inc-
NGTrie+ is 89 times faster than BEVA and META. When there
are 64 characters, the gap enlarges to 989 times. Note that
in real applications, some alphabets can be very large, e.g.,
Unicode.

8.3.2 Varying dataset size

We study the scalability of the algorithms by varying dataset
size. 20% to 100% data strings were randomly sampled from
MEDLINE. Figure 10b shows the ratio of the searching times
on the sample to that on the 20% dataset. We set query length
to 8 and 7 to 3. The general trend is that the searching times
of the algorithms all grow with larger dataset size. INncNGTrie
and IncNGTrie+ exhibit slower growth rates than direct trie-
based methods. When the data set size jumps from 20% to

@ Springer

938 J.Qinetal.

Fig. 10 Scalability

108 F[TncNGTrie —%— BEVA --B-- E| IncNGTrie —%— BEVA --B-- ‘
IncNgTrie+ - ©- META —+ - IncNgTrie+ - © - META —+ -
— — e B} _q’
2 R T Sl
o o 10'
E E
S S
10°
B ------" O------- ©o------- ©0------- 4
107!
20% 40% 60% 80% 100%
Alphabet Set Size Percentage
(a) Synthetic, Varying Alphabet Size (b) MEDLINE, Varying Dataset Size
Table 4 Mean reciprocal rank (in percentage), AOL
k lgl =4 lgl =5 lgl =6 lgl =7 lgl =8
SSXED SS ED SSXED SS ED SSXED SS ED SSXED SS ED SSXED SS ED
10 7.6 0.6 5.4 14.4 2.8 11.5 24.3 9.5 20.8 28.9 16.5 23.1 30.8 19.2 259
50 8.8 0.8 5.8 16.4 2.9 12.5 26.6 10.3 22.8 30.9 17.3 259 32.1 20.0 26.9
Table 5 Success rate (in percentage), AOL
k lgl =4 lgl =5 lgl =6 lgl =7 lgl =8
SSxED SS ED SSXED SS ED SSxED SS ED SSXED SS ED SSxED SS ED
10 16.7 3.7 12.3 254 11.2 23.1 42.2 30.0 39.1 55.8 47.4 48.6 63.2 55.1 56.8
50 194 4.6 13.8 273 13.2 24.7 45.2 34.8 42.3 594 499 50.9 70.1 58.4 58.2

100%, the searching time increases by 4.1 times for BEVA,
4.2 times for META, but only 1.5 times for IncNGTrie and
1.2 times for IncNGTrie+. This showcases the less sensitive-
ness of our algorithms to dataset size than direct trie-based
algorithms.

8.4 Top-k query processing
8.4.1 Ranking function

We first evaluate the result quality using the proposed ranking
function (Eq. 1, denoted by SSXED). Two alternative ranking
functions are compared: (1) descending order of static score
and allowing a threshold of 3 edit operations (denoted by SS),
and (2) ascending order of edit distance (denoted by ED). We
use the AOL dataset because it has a query log. To balance
the frequency and the edit distance, the static score is given
by the logarithm to base 10 of frequency in the query log.
Tables 4 and 5 show the mean reciprocal ranks (MRR) and
the success rates (SR) of the three ranking functions when
k = 10 and 50, respectively. MRR is defined as the aver-
age reciprocal of the intended string’s ranking in the top-k
suggestions (counted as O if not appearing). SR is defined
as the percentage of queries such that the intended string
appears in the top-k suggestions. We show the results for
query lengths between 4 and 8, which we believe are suit-
able for query autocompletion applications. The results for

@ Springer

queries shorter than 4 characters are less meaningful as the
qualities are low for all the ranking methods compared. The
best values are marked in boldface. The performance of SS
is the worst among the three ranking methods, because it
only considers the static score and ignores to what extent
data strings are close to the query, though a threshold of 3
edit operations is allowed. ED ranks the results by the close-
ness to the query and delivers good performance, but it does
not consider the popularity of terms in the query. By balanc-
ing between popularity and closeness, SSXED is the best in
terms of both MRR and SR. Its advantage over ED is around
2% to 5% of MRR and 2% to 12% of SR. Note that even
a small absolute difference in MRR could lead to consider-
able performance gain [57,69]. Another observation is that
the margin increases when more characters are input to the
query, showcasing the more importance of popularity when
the query becomes more predictable.

8.4.2 Effect of optimizations

We evaluate the optimization techniques proposed in Sect. 5.
We use the proposed ranking function SSXED and the first
three datasets. The static scores are given by the frequency
in the dataset. Figure 11a—f shows the average query response
times by varying k under query lengths of 4 and 7 (same as
Fig. 7, not accumulated time but measured only when the
fourth or seventh character is typed). The baseline (denoted

Efficient query autocompletion with edit distance-based error tolerance

939

14 b l Baseline C—11 Early+nit ez
Early Xxxx1

10 30 40

k
(a) DBLP, Query Response Time
(lgl = 4)
0.5
Baselne —— __ Early+Init :'ﬁ_
s Earl

o
@

Time (ms)

o

o

1

40 50

(d) DBLP, Query Response Time
(lgl =7)

Time (ms)

Time (ms)

[Baseline C—3 Early+Init e
Early (XXX

X

R

10 20

(b) UMBC, Query Response Time
(lgl = 4)

12
Baselne 0 Early+Inl ===
Early oo

%
K
K
K
K
K
%
2

40

k
() UMBC, Query Response Time
(lal =7)

Fig. 11 Effect of optimizations for top-k query processing

" [META —&— IncNgTrie+ - -0 - 4 [META —a— IncNgTrie+ - © -]
10 10
2 1 2
2 107 2 10!
- 1072 = 1072
10 bomge =207 Y S S
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
Prefix Length Prefix Length
(a) DBLP, Query Response Time (b) UMBC, Query Response Time
(k = 50) (k = 50)
2
[META —a— IncNgTrie+ - o - | 10 [META —a— IncNgTrie+ - © -]
102
I m
= E
[[} -4
E £ e T
= = _-e-"7
-e-" -
10 109 4
10 20 30 40 50 10 20 30 40 50
k k
(d) DBLP, Query Response Time (e) UMBC, Query Response Time
(lgl = 4) (lal = 4)
1 0
10 [META —~— IncNgTrie+ - 0 - 10 [META —— IncNgTrie+ - -©- -
m @
E £
(o} o)
£ £
IS [S
107
10 20 30 40 50 10 20 30 40 50
k k
(g) DBLP, Query Response Time (h) UMBC, Query Response Time
(lgl =7) (lal =7)

Fig. 12 Top-k query processing speed (ranking by edit distance only)

Time (ms)

Time (ms)

Time (ms)

Time (ms)

Time (ms)

120

Baseline —3 Early+Init ez
Early [XXXX)

2

10

R

%

20

30

(¢c) MEDLINE, Query Response Time

(Igl = 4)

Baseline —— Early+Init e
Early &xx=1

k

(f) MEDLINE, Query Response Time

(Igl =7)

. [META —— IncNgTrie+ - © -]
10
10° -
107
102
103 D i
12 3 4 5 6 7 8 9 10
Prefix Length
(¢) MEDLINE, Query Response Time
(k = 50)
2
10 [META —a— IncNgTrie+ - © - |
PR
Le-en i
109¢---""""°
10 20 30 40 50
k
(f) MEDLINE, Query Response Time
(lgl = 4)
107" Gee
102
10 20 30 40 50
k
(i) MEDLINE, Query Response Time
(lal =7)

@ Springer

940

J.Qinetal.

103 NoReduction Zzzz1

StringMerge mmmmm

FullReduction ez
v

Index Size (MB)

Index Size (MB)

NoReduction Zzzz1
StringMerge mmm—m
FullReduction e

KOOI

(a) DBLP, Index Size

Index Size (MB)

LA

5

NoReduction Zzzz1
StringMerge mmm—
FullReduction EEm

(b) UMBC, Index Size

(¢) MEDLINE, Index Size

IncNGTrie-No —¢—
IncNGTrie-Full - © -

TNcNGTrie+-No --8--

10 ‘ T
IncNGTrie+-Full —+ =

Time (ms)
A
%

Time (ms)

IncNGTrie-No ——
IncNGTrie-Full - © -

TNcNGTrie+-No --83--
IncNGTrie+-Full — =

IncNGTrie-No ——
IncNGTrie-Full - © -

IncNGTrie+-No --& -~
IncNGTrie+-Full — -

Prefix Length

(d) DBLP, Searching Time
(r=23)

3 4 5 6 7 8 9 10 "
Prefix Length

(e) UMBC, Searching Time
(r=3)

3 4 5 6 7 8 9 10 " 12
Prefix Length

(f) MEDLINE, Searching Time
(r=3)

Fig. 13 Indexing performance

by Baseline) is the INCNGTrie+ algorithm without any opti-
mization. The algorithm that utilizes early termination is
denoted by Early. We apply the proposed initialization tech-
nique on top of Early and denote the resultant algorithm by
Early + Init. Since Baseline has to retrieve all the underlying
strings of the active nodes, its running time is insensitive to .
For Early and Early + Init, as we have more temporal results
to keep for a larger k, a moderate increase in query response
time is witnessed. Comparing the two query lengths (4 and
7), we spend more query response time when the query length
is 4. This is because a query of length 4 is on average less
selective than a query of length 7, and thus we have more
underlying strings to rank for the former case (cf. Fig. 9a—c).
Early termination and good initialization are both useful in
improving query processing speed. They are more effective
when the query length is small, and early termination is more
effective. With the two optimizations, the query processing
speed is improved by up to 3.2 times when the query length
is 4 and 2.5 times when the query length is 7.

8.4.3 Comparison with alternative method

We compare the top-k query processing performance of Inc-
NGTrie+ with META under the ranking function of ascending
order of edit distance (ED), because it is the only rank-
ing function supported by META when additional reranking
methods are not applied. Figure 12a—c shows the average
query response time when k = 50, varying query length. An
increasing trend is observed for both META and IncNGTrie+,
since the query processing time is accumulated when more
characters are input into the query. Thanks to neighborhood
generation, IncNGTrie+ is always faster than META. The

@ Springer

speedup varies from 2 to 35 times on the three datasets. For
the comparison by varying k, we plot the response time when
the query length is 4 in Fig. 12d—f, and the response time
when the query length is 7 in Fig. 12g—i. The response times
of the two algorithms are both moderately increasing with k.
This is expected, as both need to retrieve more results. The
gap between the two algorithms is consistent. No obvious
difference is observed between the performances for the two
query lengths. INcNGTrie+ is always the faster algorithm.

8.5 Indexing

The techniques proposed in Sect. 6 for index size reduction
are evaluated. We use the term NoReduction to denote the trie
that indexes deletion neighborhood without any index size
reduction. StringMerge denotes that the data string merge
is applied. FullReduction denotes that the common subtree
merge is further applied. Figure 13a—c shows the index sizes
of the algorithms on the three datasets with varying t. Both
optimizations are effective at reducing index size, and the
reduction is more substantial with an increasing threshold.
For example, on MEDLINE and t = 3, StringMerge reduces
index size by 2.2 times, and FullReduction further reduces
it by 6.4 times. Our algorithms have larger index sizes than
direct trie-based methods (BEVA and META), and the gap
increases for larger 7. This is expected as the number of
variants is exponential in . Nonetheless, the index size is
reduced to several GB (for 1-2 millions of data strings) by
the two optimizations. Note that the index size can be further
reduced using common trie compression techniques such as
radix tree and double-array trie. BEVA’s index size is slightly

Efficient query autocompletion with edit distance-based error tolerance

941

Table 6 Index construction time (s)

Dataset T BEVA META NoReduct. FullReduct.
DBLP 1 0.63 0.14 5.4 20.1

2 0.63 0.14 30.2 89.1

3 0.63 0.14 101.1 236.9
UMBC 1 3.97 0.92 24.7 102.1

2 3.97 0.92 130.2 508.7

3 3.97 0.92 337.5 1029.1
MEDLINE 1 3.48 0.86 29.1 112.1

2 3.48 0.86 141.6 698.8

3 3.48 0.86 399.1 1222.7

larger than META’s, since BEVA maintains an automaton for
fast active node propagation.

We study the effect of index reduction on query processing
speed. Figure 13d—f shows the searching times of IncNGTrie
and IncNGTrie+ before and after applying the index reduction
techniques when 7 = 3. -Full and -No denote the algorithms
with and without index reduction, respectively. With index
reduction, the searching time exhibits only a slight increase
(up to 1.2 times). The increase results from the data string
merge that replaces active state propagation with edit distance
computation, which imposes more overhead.

We compare the index construction time and show the
result in Table 6. Direct trie-based methods spend the least
time on index construction as they simply build a trie from
data strings. The index construction times of neighborhood
generation-based method grow with t due to more variants
generated. With index reduction, the time spent on index
construction increases, but considering this process is offline,
the time is still affordable under the largest threshold setting.

9 Related work

Query autocompletion has been adopted in many appli-
cations such as Web search engines, command shells in
operating systems, and text editors.

There has also been considerable interest in query auto-
completion in research community. We refer readers to a
recent survey for various kinds of query autocompletion [39].
The reactive keyboard [20] is a device that accelerates type-
written communication by predicting what the user is going
to type. Grabski and Scheffer [30] studied the query pre-
diction using index-based information retrieval techniques
to complete a sentence given an initial fragment. Bast and
Weber [5] proposed to use a succinct index to provide answers
to word-level autocompletions. Nandi and Jagadish [53] stud-
ied the problem of autocompletion at the phrase level of
multiple words. Hsu and Ottaviano [34] investigated in the

direction of trie compression techniques to seek space effi-
ciency. Fan et al. [27] and Bhatia et al. [6] proposed to handle
query suggestion without query logs. Some recent stud-
ies [10,13,58,66,69] focused on find time-sensitive results
by taking account of query popularity varying over time.
There are also a few studies based on user behavior, e.g.,
returning context-aware [4,33,38,45-47,49,73] or personal-
ized [11,12,57] results. Recently, with the rapid growth of
the popularity of mobile devices, location-aware query auto-
completion [35,36,55,75,76] received much attention.

Query autocompletion with edit distance constraints to tol-
erate errors were first studied in [37] and [17]. Li et al. [43]
improved the method proposed in [37] to reduce memory
consumption and query response time, both included in the
TASTIER project [42] targeting type-ahead search. Zhou et
al. [77] proposed the notion of edit vector to achieve the min-
imum active node size under reasonable constraints. Deng et
al. [23] also proposed to reduce active node size by consid-
ering only matching characters and using a compact index.
All of them are direct trie-based methods. It is noteworthy to
mention the difference between this paper and our previous
work [77]: (1) In [77], we directly index data strings in a trie,
while data strings’ deletion neighborhoods are indexed in this
paper. (2) The method in [77] achieves minimum active node
size by eliminating ancestor—descendant relationship among
active nodes, while we reduce active state size using neigh-
borhood generation on both query and data strings. (3) There
is no need for duplicate removal for [77] because it guar-
antees ancestor—descendant relationship is eliminated for
active nodes, while we develop corresponding techniques to
remove duplicates that result from neighborhood generation
in this paper. Algorithms were also developed to support top-
k queries for fuzzy type-ahead search [16,23,44]. Cetindil
et al. [16] proposed a ranking method for error-tolerant
autocompletion using proximity information. Apart from
edit distance, Markov n-gram transformation model [24] is
adopted for error tolerance in the autocompletion task.

Another line of work aims at query recommendations,
making reformulations to queries to assist users. The pro-
posed solutions are mainly based on query clustering [3,56,
68], session analysis [15,32], search behavior models [61],
and Markov models [14,32,59].

Edit distance is a common distance function for approx-
imate string matching. We refer readers to [9] for related
work. Neighborhood generation is a category amid the vari-
ous approaches. It computes a set of strings obtainable from
the query or data strings by at most 7 edit operations. The
size of the neighborhood is O (|s|* X'7) for the full neighbor-
hood method [52]. To reduce its size, deletion neighborhood
was proposed for 7 = 1 [50] and extended to the general
case [7]. k-errata trie [18] was proposed to process dictio-
nary matching with edit distance constraints and was later
improved [60]. Unlike our algorithm, the method in [60] gen-

@ Springer

942

J.Qinetal.

erates full neighborhood, not only deletion but also insertion
and substitution, though a character inserted or substituted is
represented in a wildcard like our #. Subtrees are also merged
in [60]. However, as its main purpose of merging subtrees is
to speed up query processing, searching the merged tree is
equivalent to searching multiple individual trees. In our work,
only identical subtrees are merged as our main purpose is to
reduce space usage. Edit distance is also adopted in simi-
larity search and join [21,28,31,40,41,54,64,67,71,72] and
approximate membership checking [22,65].

10 Conclusion

We investigate new solutions to error-tolerant query auto-
completion using edit distance as constraints. Unlike existing
approaches that directly index data strings in a trie, we devise
a method to organize the trie index on the basis of deletion
neighborhood of data strings. The new method achieves a
very small and alphabet-insensitive active state size to speed
up both thresholded and top-k query processing. Additional
optimization techniques are developed to remove duplicates
in query results and reduce index size. Extensive experimen-
tal evaluation over large-scale real datasets demonstrates that
the proposed method significantly outperforms existing solu-
tions in query response time.

Acknowledgements Chuan Xiao was supported by JSPS Kakenhi
16H01722, 17H06099, 18H04093, and NSFC 61702409. Sheng Hu
and Yoshiharu Ishikawa were supported by JSPS Kakenhi 16H01722.
Jie Zhang was supported by NSFC 61702409. Wei Wang was supported
by ARC DPs 170103710 and 180103411, and D2DCRC DC25002 and
DC25003. We thank the authors of [23] for kindly providing their source
codes.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis
of Computer Algorithms. Addison-Wesley, Boston (1974)

2. Aoe, J.-I.: An efficient digital search algorithm by using a double-
array structure. IEEE Trans. Softw. Eng. 15(9), 1066-1077 (1989)

3. Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M.: Improving search
engines by query clustering. JASIST 58(12), 1793-1804 (2007)

4. Bar-Yossef, Z., Kraus, N.: Context-sensitive query auto-
completion. In: WWW, pp. 107-116 (2011)

5. Bast, H., Weber, I.: Type less, find more: fast autocompletion search
with a succinct index. In: SIGIR, pp. 364-371 (2006)

6. Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the
absence of query logs. In: SIGIR, pp. 795-804 (2011)

7. Bocek, T., Hunt, E., Stiller, B.: Fast similarity search in large dictio-
naries. Technical Report ifi-2007.02. Department of Informatics,
University of Zurich (2007)

8. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In:
ICDE, pp. 421-430 (2001)

9. Boytsov, L.: Indexing methods for approximate dictionary search-
ing: comparative analysis. ACM J. Exp. Algorithm. 16(1), 1 (2011)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Cai, F,, Chen, H.: Term-level semantic similarity helps time-aware
term popularity based query completion. J. Intell. Fuzzy Syst.
32(6), 3999-4008 (2017)

Cai, F,, Chen, W., Ou, X.: Learning search popularity for person-
alized query completion in information retrieval. J. Intell. Fuzzy
Syst. 33(4), 2427-2435 (2017)

Cai, F., de Rijke, M.: Selectively personalizing query auto-
completion. In: SIGIR, pp. 993-996 (2016)

Cai, F, Liang, S., de Rijke, M.: Prefix-adaptive and time-sensitive
personalized query auto completion. IEEE Trans. Knowl. Data Eng.
28(9), 2452-2466 (2016)

Cao, H., Jiang, D., Pei, J., Chen, E., Li, H.: Towards context-aware
search by learning a very large variable length hidden Markov
model from search logs. In: WWW, pp. 191-200 (2009)

Cao, H.,Jiang, D.,Pei,J.,He, Q., Liao, Z., Chen, E., Li, H.: Context-
aware query suggestion by mining click-through and session data.
In: KDD, pp. 875-883 (2008)

Cetindil, I., Esmaelnezhad, J., Kim, T., Li, C.: Efficient instant-
fuzzy search with proximity ranking. In: ICDE, pp. 328-339 (2014)
Chaudhuri, S., Kaushik, R.: Extending autocompletion to tolerate
errors. In: SIGMOD, pp. 707-718 (2009)

Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and
indexing with errors and don’t cares. In: STOC, pp. 91-100 (2004)
Daciuk, J.: Comparison of construction algorithms for minimal,
acyclic, deterministic, finite-state automata from sets of strings. In:
CIAA, pp. 255-261 (2002)

Darragh, J.J., Witten, L.H., James, M.L.: The reactive keyboard: a
predicive typing aid. IEEE Comput. 23(11), 41-49 (1990)

Deng, D., Li, G., Feng. J.: A pivotal prefix based filtering algorithm
for string similarity search. In: SIGMOD, pp. 673-684 (2014)
Deng, D., Li, G., Feng, J., Duan, Y., Gong, Z.: A unified framework
for approximate dictionary-based entity extraction. VLDB J. 24(1),
143-167 (2015)

Deng, D., Li, G., Wen, H., Jagadish, H.V., Feng, J.: META: an
efficient matching-based method for error-tolerant autocompletion.
PVLDB 9(10), 828-839 (2016)

Duan, H., Hsu, B.-J.P.: Online spelling correction for query com-
pletion. In: WWW, pp. 117-126 (2011)

Duan, H., Li, Y., Zhai, C., Roth, D.: A discriminative model for
query spelling correction with latent structural SVM. In: EMNLP-
CoNLL, pp. 1511-1521 (2012)

Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. In: PODS (2001)

Fan, J., Wu, H., Li, G., Zhou, L.: Suggesting topic-based query
terms as you type. In: APWeb, pp. 61-67 (2010)

Feng,J., Wang, J., Li, G.: Trie-join: a trie-based method for efficient
string similarity joins. VLDB J. 21(4), 437-461 (2012)

Gao, J., Li, X., Micol, D., Quirk, C., Sun, X.: A large scale ranker-
based system for search query spelling correction. In: COLING,
pp. 358-366 (2010)

Grabski, K., Scheffer, T.: Sentence completion. In: SIGIR, pp. 433—
439 (2004)

Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukr-
ishnan, S., Srivastava, D.: Approximate string joins in a database
(almost) for free. In: VLDB, pp. 491-500 (2001)

He, Q., Jiang, D., Liao, Z., Hoi, S.C.H., Chang, K., Lim, E.-P., Li,
H.: Web query recommendation via sequential query prediction.
In: ICDE, pp. 1443-1454 (2009)

Hofmann, K., Mitra, B., Radlinski, F., Shokouhi, M.: An eye-
tracking study of user interactions with query auto completion.
In: CIKM, pp. 549-558 (2014)

Hsu, B.P,, Ottaviano, G.: Space-efficient data structures for top-k
completion. In: WWW, pp. 583-594 (2013)

Hu, S., Xiao, C., Ishikawa, Y.: An efficient algorithm for location-
aware query autocompletion. IEICE Trans. 101-D(1), 181-192
(2018)

Efficient query autocompletion with edit distance-based error tolerance

943

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

Ji, S., Li, C.: Location-based instant search. In: SSDBM, pp. 17-36
(2011)

Ii, S, Li, G, Li, C., Feng, J.: Efficient interactive fuzzy keyword
search. In: WWW, pp. 371-380 (2009)

Jiang, J., Ke, Y., Chien, P., Cheng, P.: Learning user reformulation
behavior for query auto-completion. In: SIGIR, pp. 445454 (2014)
Krishnan, U., Moffat, A., Zobel, J.: A taxonomy of query auto
completion modes. In: ADCS, pp. 6:1-6:8 (2017)

Li, C., Wang, B., Yang, X.: VGRAM: improving performance of
approximate queries on string collections using variable-length
grams. In: VLDB, pp. 303-314 (2007)

Li, G., Deng, D., Feng, J.: A partition-based method for string sim-
ilarity joins with edit-distance constraints. ACM Trans. Database
Syst. 38(2), 9:1-9:33 (2013)

Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on rela-
tional data: a tastier approach. In: SIGMOD, pp. 695-706 (2009)
Li, G, Ji, S, Li, C., Feng, J.: Efficient fuzzy full-text type-ahead
search. VLDB J. 20(4), 617-640 (2011)

Li, G., Wang, J., Li, C., Feng, J.: Supporting efficient top-k queries
in type-ahead search. In: SIGIR, pp. 355-364 (2012)

Li, L., Deng, H., Dong, A., Chang, Y., Baeza-Yates, R.A., Zha, H.:
Exploring query auto-completion and click logs for contextual-
aware web search and query suggestion. In: WWW, pp. 539-548
(2017)

Li, L., Deng, H., Dong, A., Chang, Y., Zha, H., Baeza-Yates, R.A.:
Analyzing user’s sequential behavior in query auto-completion via
Markov processes. In: SIGIR, pp. 123-132 (2015)

Li, Y., Dong, A., Wang, H., Deng, H., Chang, Y., Zhai, C.: A two-
dimensional click model for query auto-completion. In: SIGIR, pp.
455-464 (2014)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Infor-
mation Retrieval. Cambridge University Press, Cambridge (2008)
Mitra, B., Shokouhi, M., Radlinski, F., Hofmann, K.: On user inter-
actions with query auto-completion. In: SIGIR, pp. 1055-1058
(2014)

Mor, M., Fraenkel, A.S.: A hash code method for detecting and
correcting spelling errors. Commun. ACM 25(12), 935-938 (1982)
Muthukrishnan, S.: Efficient algorithms for document retrieval
problems. In: SODA, pp. 657-666 (2002)

Myers, E.-W.: A sublinear algorithm for approximate keyword
searching. Algorithmica 12(4/5), 345-374 (1994)

Nandi, A., Jagadish, H.V.: Effective phrase prediction. In: VLDB,
pp- 219-230 (2007)

Qin, J., Wang, W., Xiao, C., Lu, Y., Lin, X., Wang, H.: Asym-
metric signature schemes for efficient exact edit similarity query
processing. ACM Trans. Database Syst. 38(3), 16 (2013)

Roy, S.B., Chakrabarti, K.: Location-aware type ahead search on
spatial databases: semantics and efficiency. In: SIGMOD, pp. 361—
372 (2011)

Sadikov, E., Madhavan, J., Wang, L., Halevy, A.Y.: Clustering
query refinements by user intent. In: WWW, pp. 841-850 (2010)
Shokouhi, M.: Learning to personalize query auto-completion. In:
SIGIR, pp. 103-112 (2013)

Shokouhi, M., Radinsky, K.: Time-sensitive query auto-
completion. In: SIGIR, pp. 601-610 (2012)

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Simonsen, J.G.,
Nie, J.: A hierarchical recurrent encoder—decoder for generative
context-aware query suggestion. In: CIKM, pp. 553-562 (2015)
Tsur, D.: Fast index for approximate string matching. J. Discrete
Algorithms 8(4), 339-345 (2010)

Tyler, S.K., Teevan, J.: Large scale query log analysis of re-finding.
In: WSDM, pp. 191-200 (2010)

Ukkonen, E.: Algorithms for approximate string matching. Inf.
Control 64(1-3), 100-118 (1985)

Wagner, R.A., Fischer, M.J.: The string-to-string correction prob-
lem. J. ACM 21(1), 168-173 (1974)

Wang, W., Qin, J., Xiao, C., Lin, X., Shen, H.T.: Vchunkjoin: an
efficient algorithm for edit similarity joins. IEEE Trans. Knowl.
Data Eng. 25(8), 1916-1929 (2013)

Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity
extraction with edit constraints. In: SIMGOD, pp. 759-770 (2009)
Wang, Y., Ouyang, H., Deng, H., Chang, Y.: Learning online trends
for interactive query auto-completion. IEEE Trans. Knowl. Data
Eng. 29(11), 2442-2454 (2017)

Wei, H., Yu, J.X., Lu, C.: String similarity search: a hash-based
approach. IEEE Trans. Knowl. Data Eng. 30(1), 170-184 (2018)
Wen, J., Zhang, H., Nie, J.: Query clustering using content words
and user feedback. In: SIGIR, pp. 442443 (2001)

Whiting, S., Jose, J.M.: Recent and robust query auto-completion.
In: WWW, pp. 971-982 (2014)

Xiao, C., Qin, J., Wang, W., Ishikawa, Y., Tsuda, K., Sadakane,
K.: Efficient error-tolerant query autocompletion. PVLDB 6(6),
373-384 (2013)

Xiao, C., Wang, W., Lin, X.: Ed-Join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB 1(1), 933—
944 (2008)

Yu, M., Wang, J, Li, G., Zhang, Y., Deng, D., Feng, J.: A unified
framework for string similarity search with edit-distance constraint.
VLDB J. 26(2), 249-274 (2017)

Zhang, A., Goyal, A., Kong, W., Deng, H., Dong, A., Chang, Y.,
Gunter, C.A., Han, J.: adaqac: adaptive query auto-completion via
implicit negative feedback. In: SIGIR, pp. 143-152 (2015)
Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.:
On supporting containment queries in relational database manage-
ment systems. In: SIGMOD, pp. 425436 (2001)

Zheng, Y., Bao, Z., Shou, L., Tung, A.K.H.: INSPIRE: a framework
for incremental spatial prefix query relaxation. IEEE Trans. Knowl.
Data Eng. 27(7), 1949-1963 (2015)

Zhong, R., Fan,J., Li, G., Tan, K., Zhou, L.: Location-aware instant
search. In: CIKM, pp. 385-394 (2012)

Zhou, X., Qin, J., Xiao, C., Wang, W., Lin, X., Ishikawa, Y.: BEVA:
an efficient query processing algorithm for error-tolerant autocom-
pletion. ACM Trans. Database Syst. 41(1), 5:1-5:44 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Efficient query autocompletion with edit distance-based error tolerance
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Analysis of previous approaches
	2.3 FastSS

	3 Neighborhood generation-based algorithms
	3.1 The IncNGTrie algorithm
	3.2 The IncNGTrie+ algorithm

	4 Fetching query results
	4.1 Eliminating case 1 duplicates
	4.2 Eliminating case 2 duplicates
	4.3 Eliminating case 3 duplicates

	5 Processing top-k queries
	5.1 Indexing and searching
	5.2 Result fetching
	5.2.1 Early termination
	5.2.2 Initialization

	5.3 Searching revisited

	6 Index size optimizations
	6.1 Data string merge
	6.2 Common subtree merge

	7 Discussions
	7.1 Deletion of characters in query
	7.2 Updates in data strings

	8 Experiments
	8.1 Experiment setup
	8.2 Query processing performance
	8.2.1 Overall query response time
	8.2.2 Searching time
	8.2.3 Result-fetching time

	8.3 Scalability
	8.3.1 Varying alphabet size
	8.3.2 Varying dataset size

	8.4 Top-k query processing
	8.4.1 Ranking function
	8.4.2 Effect of optimizations
	8.4.3 Comparison with alternative method

	8.5 Indexing

	9 Related work
	10 Conclusion
	Acknowledgements
	References

